
CASE TOOLS AND SOFTWARE TESTING 
METHODOLOGY 

LABORATORY MANUAL 
 

B.TECH 
(III YEAR – II SEM) 

(2018-19) 
 
 
 

 
DEPARTMENT OF INFORMATION TECHNOLOGY 

 

MALLA REDDY COLLEGE OF 
ENGINEERING & TECHNOLOGY 

(Autonomous Institution – UGC, Govt. of India) 
Recognized under 2(f) and 12 (B) of UGC ACT 1956 

Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified 
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India 



 

 

DEPARTMENT OF INFORMATION TECHNOLOGY 
 

Vision 

 To acknowledge quality education and instill high patterns of 

discipline making the students technologically superior and ethically 

strong which involves the improvement in the quality of life in 

human race. 

 
 
 

Mission 

 To achieve and impart holistic technical education using the best of 

infrastructure, outstanding technical and teaching expertise to 

establish the students into competent and confidentengineers. 

 Evolving the center of excellence through creative and innovative 

teaching learning practices for promoting academic achievement to 

produce internationally accepted competitive and world class 

professionals. 



 

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) 
 

PEO1 – ANALYTICAL SKILLS 
 

1. To facilitate the graduates with the ability to visualize, gather information, 

articulate, analyze, solve complex problems, and make decisions. These are 

essential to address the challenges of complex and computation intensive 

problems increasing their productivity. 

 
PEO2 – TECHNICAL SKILLS 

 
2. To facilitate the graduates with the technical skills that prepare them for 

immediate employment and pursue certification providing a deeper 

understanding of the technology in advanced areas of computer science and 

related fields, thus encouraging to pursue higher education and research based 

on their interest. 

 

PEO3 – SOFT SKILLS 
 

3. To facilitate the graduates with the soft skills that include fulfilling the mission, 

setting goals, showing self-confidence by communicating effectively, having a 

positive attitude, get involved in team-work, being a leader, managing their 

career and their life. 

 
PEO4 – PROFESSIONAL ETHICS 

 
To facilitate the graduates with the knowledge of professional and ethical 

responsibilities by paying attention to grooming, being conservative with style, 

following dress codes, safety codes,and adapting themselves to technological 

advancements. 



 

PROGRAM SPECIFIC OUTCOMES (PSOs) 

After the completion of the course, B. Tech Computer Science and Engineering, the 

graduates will have the following Program Specific Outcomes: 

1. Fundamentals and critical knowledge of the Computer System:- Able to 

Understand the working principles of the computer System and its components , 

Apply the knowledge to build, asses, and analyze the software and hardware 

aspects of it . 

 

 
2. The comprehensive and Applicative knowledge of Software Development: 

Comprehensive skills of Programming Languages, Software process models, 

methodologies, and able to plan, develop, test, analyze, and manage the 

software and hardware intensive systems in heterogeneous platforms 

individually or working in teams. 

 
 

3.  Applications of Computing Domain & Research: Able to use the 

professional, managerial, interdisciplinary skill set, and domain specific tools in 

development processes, identify the research gaps, and provide innovative 

solutions to them. 



PROGRAM OUTCOMES (POs) 

Engineering Graduates will be able to: 
1. Engineering knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals, and an engineering specialization to the solution 
of complex engineering problems. 

 
2. Problem analysis: Identify, formulate, review research literature, and analyze 

complex engineering problems reaching substantiated conclusions using first 
principles of mathematics, natural sciences, and engineering sciences. 

3. Design / development of solutions: Design solutions for complex engineering 
problems and design system components or processes that meet the  
specified needs with appropriate consideration for the public health and 
safety, and the cultural, societal, and environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge 
and research methods including design of experiments, analysis and 
interpretation of data, and synthesis of the information to provide valid 
conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, 
resources, and modern engineering and IT tools including prediction and 
modeling to complex engineering activities with an understanding of the 
limitations. 

6. The engineer and society: Apply reasoning informed by the contextual 
knowledge to assess societal, health, safety, legal and cultural issues and the 
consequent responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional 
engineering solutions in societal and environmental contexts, and 
demonstrate the knowledge of, and need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and 
responsibilities and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a 
member or leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities 
with the engineering community and with society at large, such as, being able 
to comprehend and write effective reports and design documentation, make 
effective presentations, and give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and 
understanding of the engineering and management principles and  apply 
these to one’s own work, as a member and leader in a team, to manage 
projects and in multi disciplinary environments. 

12. Life- long learning: Recognize the need for, and have the preparation and 
ability to engage in independent and life-long learning in the broadest  
context of technological change. 



MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 
    

GENERAL LABORATORY INSTRUCTIONS    
 

1. Students are advised to come to the laboratory at least 5 minutes before (to the 

starting time), those who come after 5 minutes will not be allowed into the lab. 

2. Plan your task properly much before to the commencement, come prepared to the lab 

with the synopsis / program / experiment details. 

3. Student should enter into the laboratory with: 

a. Laboratory observation notes with all the details (Problem statement, Aim, 

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab session. 

b. Laboratory Record updated up to the last session experiments and other utensils (if 

any) needed in the lab. 

c. Proper Dress code and Identity card. 

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer 

system allotted to you by the faculty. 

5. Execute your task in the laboratory, and record the results / output in the lab 

observation note book, and get certified by the concerned faculty. 

6. All the students should be polite and cooperative with the laboratory staff, must 

maintain the discipline and decency in the laboratory. 

7. Computer labs are established with sophisticated and high end branded systems, 

which should be utilized properly. 

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during 

the lab sessions. Misuse of the equipment, misbehaviors with the staff and systems 

etc., will attract severe punishment. 

9. Students must take the permission of the faculty in case of any urgency to go out ; if 

anybody found loitering outside the lab / class without permission during working 

hours will be treated seriously and punished appropriately. 

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves 

the lab after completing the task (experiment) in all aspects. He/she must ensure the 

system / seat is kept properly. 

 

 

 

 

 

 

 

 
Head of the Department Principal 



Course Educational Objectives: 

The objectives of this laboratory are: 

 
 

1. Understand how UML supports the entire OOAD process. 

2. Become familiar with all phases of OOAD. 

3. Be able to understand the essential characteristics of tools used for Designing a model. 

4. Understand different software testing tools and their features 

5. Manage the project from beginning to end 

6. Define, formulate and analyze a problem 

7. To learn how to write software testing documents, and communicate with engineers in 

various forms. To gain the techniques and skills on how to use modern software 

testing tools to support software testing projects. 

 
Course Outcomes: 

 
 

Upon the completion of practical course Case tools & Software testing Lab, the student 

will be able to attain the following things: 

1. Able to understand the history, cost of using and building CASE tools. 

2. Ability to construct and evaluate hybrid CASE tools by integrating existing tools. 

3. Understand the myths and facts of software testing. 

4. Analyze and design test cases using black box testing technique which includes 

decision tables domain testing and transition testing. 

5. Analyze and design test cases for a white box testing technique which includes path 

testing, data flow graphs and matrix representation for a given problem. 

6. Execute how to run test script wizard and Execute how to do performance testing using 

testing tools including Winrunner and JMeter respectively. 

7. Demonstrate the importance of testing and its role in need of software development 



CASE TOOLS & STM LIST OF PROGRAMS 

 

Sl.No Name of the Experiment Page No 

1. Introduction to UML 1 

2. Class Diagram for ATM 14 

3. Use Case Diagram for ATM 16 

4. Sequence Diagram for ATM 19 

5. Collaboration Diagram for ATM 21 

6. State chart Diagram for ATM 25 

7. Activity Diagram for ATM 27 

8. Component Diagram for ATM 31 

9. Deployment Diagram for ATM 32 

10 Write a programs in C language in demonstration the 
working of the following constructs i) do..while ii) 
while..do iii) if…else iv)switch v) for 

34 

11 A program for written in C language for Matrix 
Multiplication fails‖ introspect the causes for its 
failure and write down the possible reasons for its 
failure 

39 

12 Take ATM system and study its system specifications 
and report various bugs. 

41 

13 Write the test cases for banking application 45 

14 Create test plan document for library management 
system 

50 

15 Study of testing tool (e.g. winrunner) 53 

16 Study of web testing tool (e.g. selenium) 61 

17 Study of bug tracking tool (e.g. bugzilla) 76 

18 Study of any test management tool (e.g. test director) 92 

19 a) Study of any open source testing tool (e.g. test link) 

b) Test Facebook Manually (beyond the syllabus) 

97 

20 Take a mini project and execute it during SDLC create 
the various UML diagrams required designing and all 
testing documents like test plan, TCD etc., 

118 



1  

Introduction 

CASE tools known as Computer-aided software engineering tools is a kind of 

component- based development which allows its users to rapidly develop information 

systems. The main goal of case technology is the automation of the entire information 

systems development life cycle process using a set of integrated software tools, such as 

modelling, methodology and automatic code generation. Component based 

manufacturing has several advantages over custom development. The main advantages 

are the availability of high quality, defect free products at low cost and at a faster time. 

The prefabricated components are customized as per the requirements of the customers. 

The components used are pre-built, ready-tested and add value and differentiation by 

rapid customization to the targeted customers. However the products we get from case 

tools are only a skeleton of the final product required and a lot of programming must be 

done by hand to get a fully finished, good product. Characteristics of CASE: 

Some of the characteristics of case tools that make it better than customized 

development are; 
 

It is a graphic oriented tool. 

 

It supports decomposition of process. Some typical CASE tools are: 

Unified Modeling Language 

 

Data modeling tools, and 

Source code generation tools 

UNIFIED MODELING LANGUAGE 

 
 

Introduction 

 

The unified modeling language (UML) is a standard language for writing software blue 

prints of the system. 

 

Definition: 

 

The UML is a language for 

 

• Visualizing 

 

• Specifying 

 

• Constructing 

 

• Documenting 

 

the artifacts of a software system. 



2  

• UML is a language that provides vocabulary and the rules for combing words in that 

vocabulary for the purpose of communication. 

• Vocabulary and rules of a language tell us how to create and real well formed models, 

but they don‟t tell you what model you should create and when should create them. 

 

Building Blocks of the UML: 

 
 

The vocabulary of the UML encompasses three kinds of building blocks: 

 

1. Things 

2. Relationships 

 

3. Diagrams 

 

Things are abstractions that are first-class citizens in a model; Relationships tie these things 

together; 

Diagrams group interesting collections of things. 

 

Things 

Things are the most important building blocks of UML. There are four kinds of things in the UML. 

 
1. Structural things 

2. Behavioral things 

3. Grouping things 

4. Annotational things 

 
1) STRUCTURAL THINGS: 

 

Structural things are the nouns of the UML models. 

These are static parts of the model, representing elements that are either 

conceptual or physical. 

There are seven kinds of Structural things. 

 
1. Class 

2. Interface 

3. Collaboration 

4. Use case 

5. Active class 

6. Component 

7. Node 



3  

mous eClicked() m 

ous ePres sed() mous 

eReleas ed() mous 

eEntered() mous 

eExited() 

<<Interface>> 

Mous eLis tener 

(from event) 

Login 

Class:  

A class is a description of a set of objects that shares the common attributes, operations, 

relationships, and semantics. A class implements one or more interfaces. 

Graphically, a class is represented as a rectangle, usually including its name, attributes and 

operations, as shown below. 

 

W in dow 

ori gin 

 S ize 

O pen() C 

los e () Disp 

l ay() 

 

Interface: 

An interface is a collection of operations that specify a service of a class or component. An 

interface describes the externally visible behavior of that element. 

Graphically the interface is rendered as a circle together with its name. 

 

 

 

 

 
 

  I Window 

 
 

Collaboration: 

Collaboration defines an interaction and is a society of roles and other elements that work 

together to provide some cooperative behavior that‟s bigger than the sum of all the elements. 

Graphically, collaboration is rendered as an ellipse with dashed lines, usually including only its 

name as shown below. 

 

Chain of 

Responsibility 

 

UseCase: 

Use case is a description of a set of sequence of actions performed by a system for a specific 

goal for the system. 

Graphically, Use Case is rendered as an ellipse with dashed lines, usually including only its 

name as shown below. 



4  

ActiveClass: 

An active class is a class whose objects own one or more processes or threads and therefore 

can initiate control activity. 

Graphically, an active class is rendered just like a class, but with heavy lines usually including 

its name, attributes and operations as shown below. 

 

Event 

Management 

 

Suspend() 

Flush() 

 
Component: 

Component is a physical and replaceable part of a system that conforms to and provides the 

realization of a set of interfaces. 

Graphically, a component is rendered as a rectangle with tabs, usually including only its name, 

as shown below. 

 
orderform.java 

 

 

 

 

 

Node:  

A Node is a physical element that exists at run time and represents a computational resource, 

generally having at least some memory and often, processing capability. 

Graphically, a node is rendered as a cube, usually including only its name, as shown below. 
 
 

 
 

 

2) BEHAVIORAL THINGS: 

Behavioral things are the dynamic parts of UML models. 

These are the verbs of a model, representing behavior over time and space. 

server 



5  

1) Interaction: 

An interaction is a behavior that consists of a set of messages exchanged among a set of 

objects(elements) within a particular context to accomplish a specific task. 

Graphically, a message is rendered as a direct line, almost always including the name if its 

operation, as shown below. 

Display 

 
 

2) State Machine: 

A state machine is a behavior that specifies the sequence of states of an object in its life cycle. 

It defines the sequence of states an object goes through in response to events. 

Graphically, a state is rendered as a rounded rectangle usually including its name and its sub- 

states, if any, as shown below. 

 

Waiting 
 

 

 

 

3) GROUPING THINGS: 

Grouping things are the organizational parts of the UML models. These are the boxes into 

which a model can be decomposed. 

There is one primary kind of grouping thing with “package”. 

Package: 

A package is a general-purpose mechanism for organizing elements into groups. 

Package is the only one grouping thing available for gathering structural and behavioral things. 
 

 
 

 

Package 

 

4) ANNOTATIONAL THINGS: 

Annotational things are the explanatory parts of the UML models. 

Annotational things can be defined as a mechanism to capture remarks, descriptions, and 

comments of UML model elements. 

Note: 

Business Rules 



6  

A note is simply a symbol for rendering constraints and comments attached to an element or a 

collection of elements. 

Graphically a note is represented as a rectangle with dog-eared corner together, with a textual 

or graphical comment, as shown below. 

 

 

 

 

 

Note 

RELATIONSHIPSINTHEUML: 

Relationship is another most important building block of UML. It shows how elements 

are associated with each other and this association describes the functionality of an 

application. There are four kinds of relationships in the UML: 

1. Dependency 

2. Association 

3. Generalization 

4. Realization 
 

Dependency 

 

Dependency is a relationship between two things in which change in one element also 

affects the other one. 

 

 

Ex: 

Dependency 

 

Dependent Class  
 

 

Independent Classs 
 

 
 

  

 

Association: 

 

Association is basically a set of links that connects elements of an UML model. It also 

describes how many objects are taking part in that relationship. 

 

1 Multipicity 1..n 
A B 

Rolename Rolename 

Association 
 

Ex: 



7  

1 
 

 

 

Generalization: 

 
Generalization can be defined as a relationship which connects a specialized element with a 

generalized element. It basically describes inheritance relationship in the world of objects. 

 
Ex: 

 

 

 Parent Class  
 

  

   

Child Class1  Child Class2 

  

 
 

Realization: 

 

Realization can be defined as a relationship in which two elements are connected. One 

element describes some responsibility which is not implemented and the other one 

implements them. This relationship exists in case of interfaces. 

 

 

 
Ex: 

 
 

<<Interface>> 

Remote 
TVSet  

 

 

   

 

DIAGRAMSINUML: 

 

All the elements, relationships are used to make a complete UML diagram and the diagram 

represents a system. 

The visual effect of the UML diagram is the most important part of the entire process. 

Each UML diagram is designed to let developers and customers view a software system from a 

different perspective and in varying degrees of abstraction. 

UML diagrams are the ultimate output of the entire system. 



8  

A diagram is the graphical presentation of a set of elements ,most often rendered as a 

connected graph of vertices(things) arcs (relationships). 

 

UML includes the following nine diagrams: 

 
1) Class diagram 

2) Object diagram 

3) Use case diagram 

4) Sequence diagram 

5) Collaboration diagram 

6) Activity diagram 

7) State chart diagram 

8) Deployment diagram 

9) Component diagram 

 
1. ClassDiagram 

 

Class diagram is a diagram that shows a set of classes, interfaces, and collaborations 

and their relationships. Class diagrams address the static design view or the static process 

view of the system. 

Graphically it is represented as follows:- 
 

 
School  Department 

 

 
 

  

  

Student  
 

 

 
2. ObjectDiagram 

 

Object diagram shows a set of objects and their relationships. These diagram the static design 

view or static process view of a system. 

 
3. UsecaseDiagram 

 

Use Case diagram shows a set of use cases and actors (a special kind of class) and their relationships.  

These diagrams address the static use case view of a system. Graphically it is represented as follows:- 

 

 

 
User Book Issue 



9  

4. SequenceDiagram 
 

Sequence diagram are interaction diagrams. This diagram emphasizes the time- 

ordering of messages. These diagrams address the dynamic view of a system. Sequence 

Diagram displays the time sequence of the objects participating in the interaction. This 

consists of the vertical dimension (time) and horizontal dimension (different 

objects).Graphically it is represented as 

follows:- 

 
 

:Bottle 
 

openBottle() 

 

 

 

 

 
 

 

 

 

5 Collaboration Diagram 
 

Collaboration diagram are also interaction diagrams. These diagrams emphasizes the structural 

organization of the objects that send and receive messages. These diagrams address the dynamic 

view of a system. Collaboration Diagram displays an interaction organized around the objects 

and their links to one another. Numbers are used to show the sequence of messages.Graphically 

it is 

represented as follows:- 

 

2: drinkWater() 

:Bottle :Person 

 
1: openBottle() 

3: closeBottle() 

 

6. Statechart Diagram 
 

State chart diagram shows a state machine, consisting of states, transitions, events and 

activities. These diagrams address the dynamic view of the system. State Chart diagram 

displays the sequences of states that an object of an interaction goes through during its life in 

response to received stimuli, together with its responses and actions. 

 

7 .Activity Diagram 
 

Activity diagram is a special kind of a state chart diagram that shows the flow from activity to activity 

within a system. These diagrams address dynamic view of a system. Activity Diagram displays a special 

:Person 

drinkWater() 

closeBottle() 



10  

state diagram where most of the states are action states and most of the transitions are triggered by 

completion of the actions in the source states. Graphically it is represented as follows:- 

 
8. ComponentDiagram 

 

Component diagram shows the organizations and dependencies among a set of 

components. These diagrams address the static implementation of view of a system. Component 

Diagram displays the high level packaged structure of the code itself. Dependencies among 

components are shown, including source code components, binary code components, and 

executable components. Some components exist at compile time, at link time, at run times well 

as at more 

than one time.Graphically it is represented as follows:- 

 

fraudagent.exe 

 

 

 

 

 

 

 

9. Deployment Diagram 
 

Deployment diagram shows the configuration of run-time processing nodes and the components that 

live on them. These diagrams address the static deployment view of architecture. Deployment Diagram 

displays the configuration of run-time processing elements and the software components, processes, 

and  objects  that  live  on  them.  Software  component   instances   represent   run-time   

manifestations of code. 

Graphically it is represented as 
follows:- 

 

 

 

 

 
<<10-T Ethernet>> 

 
 
 

 
<<RS-232>> 

Exam Client 

exam.exe 

Server 

fraudagent.dll 

Admin Client 

admin.exe 



11  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Experiment 1 

ATM System 



12  

Automatic Teller Machine (ATM) 

Description of ATM System 

 
The software to be designed will control a simulated automated teller machine (ATM) having a 

magnetic stripe reader for reading an ATM card, a customer console (keyboard and display) for 

interaction with the customer, a slot for depositing envelopes, a dispenser for cash, a printer for 

printing customer receipts, and a key-operated switch to allow an operator to start or stop the machine. 

The ATM will communicate with the bank‟s computer over an appropriate communication link. (The 

software on the latter is not part of the requirements for this problem.) 

 
The ATM will service one customer at a time. A customer will be required to insert an ATM card and 

enter a personal identification number (PIN) – both of which will be sent to the bank for validation as 

part of each transaction. The customer will then be able to perform one or more transactions. The card 

will be retained in the machine until the customer indicates that he/she desires no further transactions, 

at which point it will be returned – except as noted below. 

 

The ATM must be able to provide the following services to the customer: 

 
1. A customer must be able to make a cash withdrawal from any suitable account linked to the 

card. Approval must be obtained from the bank before cash is dispensed. 

2. A customer must be able to make a deposit to any account linked to the card, consisting of cash 

and/or checks in an envelope. The customer will enter the amount of the deposit into the ATM, 

subject to manual verification when the envelope is removed from the machine by an operator. 

Approval must be obtained from the bank before physically accepting the envelope. 

3. A customer must be able to make a transfer of money between anytwo accounts linked to the 

card. 

4. A customer must be able to make a balance inquiry of any account linked to thecard. 

5. A customer must be able to abort a transaction in progress bypressing the Cancel key instead 

of responding to a request from the machine. 

 
The ATM will communicate each transaction to the bank and obtain verification that it was allowed 

by the bank. Ordinarily, a transaction will be considered complete by the bank once it has been 

approved. In the case of a deposit, a second message will be sent to the bank indicating that the 

customer has deposited the envelope. (If the customer fails to deposit the envelope within the timeout 

period, or presses cancel instead, no second message will be sent to the bank and the deposit will not 

be credited to the customer.) 



13  

If the bank determines that the customer‟s PIN is invalid, the customer will be required to re-enter the 

PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after 

three tries, the card will be permanently retained by the machine, and the customer will have to contact 

the bank to get it back. 

 

If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation of 

the problem, and will then ask the customer whether he/she wants to do another transaction. 

 
The ATM will provide the customer with a printed receipt for each successful transaction, showing the 

date, time, machine location, type of transaction, account(s), amount, and ending and available 

balance(s) of the affected account (“to” account for transfers). 

 
The ATM will have a key-operated switch that will allow an operator to start and stop the servicing of 

customers. After turning the switch to the “on” position, the operator will be required to verify and 

enter the total cash on hand. The machine can only be turned off when it is not servicing a customer. 

When the switch is moved to the “off” position, the machine will shut down, so that the operator may 

remove deposit envelopes and reload the machine with cash, blank receipts, etc. 

 
Objectives 

The objective of this software is similar to ATM software installed in ATM center. It should  

first validate the pin in the ATM card. Then the type of transaction is enquired and the information 

from the customer is validated. If it is a withdrawal the amount is asked. After the money is delivered 

the transaction just made is updated in the database where the customer‟s information is stored. 

Scope 

The scope of the project is to design an ATM system that will help in completely automatic 

banking this software is going to be designed for withdrawal and deposit of money and register the 

transaction in the database where the customer‟s information is stored. 



14  

A) Name of the experiment: Class diagram for ATM System 

 
1. AIM: To design and implement ATM system through Class Diagram 

 
Purpose: 

 
The purpose of the class diagram is to model the static view of an application. The class diagrams are 

the only diagrams which can be directly mapped with object oriented languages and thus widely used  

at the time of construction. The UML diagrams like activity diagram, sequence diagram can only give 

the sequence flow of the application but class diagram is a bit different. So it is the most popular UML 

diagram in the coder community. So the purpose of the class diagram can be summarized as: 

 

• Analysis and design of the static view of an application. 

• Describe responsibilities of a system. 

• Base for component and deployment diagrams. 

• Forward and reverse engineering. 

 
Contents: 

 
Class diagrams commonly contain the following things 

 
• Classes 

• Interfaces 

• Collaborations 

• Dependency, generalization and association relationships 

 
Procedure:- 

Step1: First Classes are created. 

Step2: Named as PinValid, Account Type, Transaction, Update, Server, Customer classes are 

created. 

Step3: Appropriate relationships are provided between them as association. 



15  

DIAGRAM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inferences: 

 
1. understand the concept of classes 

2. identify classes and attributes and operations for a class 

3. model the class diagram for the system 

 
Applications: 

Online transaction 

Online banking 



16  

B) NAME OF EXPERIMENT: Use case diagram for ATMSystem. 

 
AIM: To design and implement ATM System through Use case Diagram. 

 
Purpose: 

 
The purpose of use case diagram is to capture the dynamic aspect of a system. Because other four 

diagrams (activity, sequence, collaboration and State chart) are also having the same purpose. So we 

will look into some specific purpose which will distinguish it from other four diagrams. Use case 

diagrams are used to gather the requirements of a system including internal and external influences. 

These requirements are mostly design requirements. So when a system is analyzed to gather its 

functionalities use cases are prepared and actors are identified. 

 

So in brief, the purposes of use case diagrams can be as follows: 

 
• Used to gather requirements of a system. 

• Used to get an outside view of a system. 

• Identify external and internal factors influencing the system. 

• Show the interacting among the requirements are actors. 

 
Procedure: 

 

Step1: First an Actor is Created and named as User/Customer. 

 

Step2: Secondly a system is created for ATM. 

 

Step3: A use case Enter PIN, Withdraw money is created and connected with user as association 

relationship. 

 

Step4: Similarly various use cases like Deposit money, Balance Enquiry, Manage Account etc are 

created and appropriate relationships are associated with each of them. 



17  

DIAGRAM: 
 

 

 

 

Enter PIN 

 

 

 

 

Withdraw Money 

 

 

 

 
Balance enquiry 

 
 

 
Customer 

 

 

 

Deposit 

 

 

 

 

Abort/ Cancel 

 

 

 

 

 
Print Receipt 

 

 

 

 
Manage Account 

 
ATMadmin 

 

 

 
 

Withdrawal UseCase 

 

A withdrawal transaction asks the customer to choose a type of account to withdraw from (e.g. 

checking) from a menu of possible accounts, and to choose an amount from a menu of possible 

amounts. The system verifies that it has sufficient money on hand to satisfy the request before sending 

the transaction to the bank. (If not, the customer is informed and asked to enter a different amount.) If 

the transaction is approved by the bank, the appropriate amount of cash is dispensed by the machine 

before it issues a receipt. A withdrawal transaction can be cancelled by the customer pressing the 

Cancel key any time prior to choosing the amount. 

 
DepositUseCase 

 

A deposit transaction asks the customer to choose a type of account to deposit to (e.g. checking) from 

a menu of possible accounts, and to type in amount on the keyboard. The transaction is initially sent to 

the bank to verify that the ATM can accept a deposit from this customer to this account. If the 



18  

transaction is approved, the machine accepts an envelope from the customer containing cash and/or 

checks before it issues a receipt. Once the envelope has been received, a second message is sent to the 

bank, to confirm that the bank can credit the customer‟s account – contingent on manual verification 

of the deposit envelope contents by an operator later. 

 
A deposit transaction can be cancelled by the customer pressing the Cancel key any time prior to 

inserting the envelope containing the deposit. The transaction is automatically cancelled if the 

customer fails to insert the envelope containing the deposit within a reasonable period of time after 

being asked to do so. 

 
InquiryUseCase 

 

An inquiry transaction asks the customer to choose a type of account to inquire about from a menu of 

possible accounts. No further action is required once the transaction is approved by the bank before 

printing the receipt. An inquiry transaction can be cancelled by the customer pressing the Cancel key 

any time prior to choosing the account to inquire about. 

 
ValidateUserUsecase: 

 
This use case is for validate the user i.e. check the pin number, when the bank reports that the 

customer‟s transaction is disapproved due to an invalid PIN. The customer is required to re-enter the 

PIN and the original request is sent to the bank again. If the bank now approves the transaction, or 

disapproves it for some other reason, the original use case is continued; otherwise the process of re- 

entering the PIN is repeated. Once the PIN is successfully re-entered 

 
If the customer fails three times to enter the correct PIN, the card is permanently retained, a screen is 

displayed informing the customer of this and suggesting he/she contact the bank, and the entire 

customer session is aborted. 

 
PrintBillusecase 

 

This usecase is for printing corresponding bill after transactions (withdraw or deposit, or balance 

enquiry, transfer) are completed. 

 
ManageAccount 

 

This use case is for updating corresponding user accounts after transactions (withdraw or deposit or 

transfer) are completed. 



19  

RESULT: 

 

Inferences: 

1. Identification of use cases. 
2. Identification of actors. 

 

INTERACTIONDIAGRAMS 

 

We have two types of interaction diagrams in UML. One is sequence diagram and the other is 

a collaboration diagram. The sequence diagram captures the time sequence of message flow from one 

object to another and the collaboration diagram describes the organization of objects in a system 

taking part in the message flow. 

 
So the following things are to be identified clearly before drawing the interaction diagram: 

 
1. Objects taking part in the interaction. 

2. Message flows among the objects. 

3. The sequence in which the messages are flowing. 

4. Object organization. 

 
Purpose: 

 
1. To capture dynamic behavior of a system. 

2. To describe the message flow in the system. 

3. To describe structural organization of the objects. 

4. To describe interaction among objects. 

 
Contents of a Sequence Diagram 

 
Objects 

Focus of control 

Messages 

Life line 

 
Contents of a Collaboration Diagram 

 
Objects 

Links 

Messages 

 

 
 

C) NAME OF EXPERIMENT: Sequence diagram for ATMSystem. 

 
AIM: To design and implement ATM System through Sequence Diagram. 



20  

Procedure:- 
 

Step1: First An actor is created and named as user. 

 

Step2: Secondly an object is created for Atm. 

 

Step3: Timelines and lifelines are created automatically for them. 

 

Step4: In sequence diagram interaction is done through time ordering of messages. So appropriate 

messages are passed between user and ATM is as shown in the figure. 

 
DIAGRAM: 

 

 

 
 

check pin no 

 

 

 
 

pin valid/invalid 

 

 

 
check account 

 

 
 

 
display status 

 

 

 

check amount 

 

 

 
display status 

 

 

 
Update account 

ATM ADMIN 



21  

AT 

D) NAME OF EXPERIMENT: collaboration for ATMSystem. 

 
AIM: To design and implement ATM System through Collaboration diagram. 

 
Procedure:- 

 

Step1: First an actor is created and named as user. 
 

Step2: Secondly an object is created for ATM. 

 

Step3: In collaboration diagram interaction is done through organization. 

 

Step4: So appropriate messages are passed between user and ATM as shown in the figure. 

 
DIAGRAM: 

 
 

1: check pin no 

3: check account 

5: check amount 

7: update account 

M 

 

2: pin valid/invalid 

4: display status 

6: display status 

ADMIN 



22  

WITHDRAWUseCase: 

 

SEQUENCE DIAGRAM 
 

 
 

 
1: Insert Card 

 
:ATM 

machine 

 
:Bank 

server 

 

2: Validate Pin 

 

3: Validate 

 
 

4: Choose Transaction 

 
5: Withdraw 

 

 
6: Check Balance 

 
7: Sufficiant Balance 

 

8: Creadit cash 
 

9: Insufficiant Balance 

 

 
10: Low balance 

 

 

 

 

 

 

 

COLLABORATION DIAGRAM 

 

 
1: Insert Card 

4: Choose Transaction 

 
5: Withdraw 

8: Creadit cash 

10:  Low balance 

 

 
 

3: Validate 
7: Sufficiant Balance 
9: Insufficiant Balance 

 

 

2: Validate Pin 

6: Check Balance 

 

 

customer 

: Bank 

server 

: ATM 

machine 

custome 

  r  



23  

ENQUIRYUseCase: 

SEQUENCE DIAGRAM: 

 
customer 

 

 
1: Insert Card 

:session :Bank 

server 

 

2: Obtain Pin 

 
3: Enter Pin 

 

4: Send Pin 

 

5: Request 

 
 

6: Obtain types of enquiry 

 
 

7: Type 

 

8: Get a/c no's 

 

9: seif 
 

10:  Bal enquiry 

 
11: Current bal 

12: Transaction history 

 

13: Previous trans 

14: Viewa/c details 

 
15: Display(a/c no,bal,names)  



24  

COLLABARATION DIAGRAM: 

 

 

 
1: Insert Card 

7: Type 

 
 

3: Enter Pin 

5: Request 

6: Obtain types of enquiry 

9: seif 

 
 

11: Current bal 

13: Previous trans 
15: Display(a/c no,bal,names) 

 

2: Obtain Pin 
4: Send Pin 

8: Get a/cno's 

10: Bal enquiry 

12: Transactionhistory 

14: View a/c details 

 

 

 

DEPOSITUseCase: 

 

SEQUENCE DIAGRAM: 
 

 

 
customer :ATM 

machine 
:Bank 

server 
1: Insert card 

 
2: Obtain Pin 

 
3: Enter Pin 

4: Validate Pin 

5: Valid Pin 

6: Enter deposit amt 

9: Insert Envelop amt slot 

10: Envelop recived 

8: Open deposit slot 

 
7: Deposit Amt 

: Bank 

server 

:session 

custome 

  r  



25  

COLLABARATION DIAGRAM: 
 

 

1: Insert card 

3: Enter Pin 

7: Deposit Amt 

 
 

 
2: Obtain Pin 

6: Enter deposit amt 

8: Open deposit slot 

9: Insert Envelop amt slot 

10: Envelop recived 
 

5: Valid Pin  
4: Validate Pin 

 

 

 
 

 
 

 

 

 

 

STATECHARTDiagram 

State Chart diagram is used to model dynamic nature of a system. They define different states of an 

object during its lifetime. And these states are changed by events. State chart diagram describes the 

flow of control from one state to another state. 

States are defined as a condition in which an object exists and it changes when some event is 

triggered. But the main purpose is to model reactive system. 

 
Contents 

• Simply state and composite states 

• Transitions, including events and actions 

 
E) NAME OF EXPERIMENT: State chart diagram for ATMSystem. 

 
AIM: To design and implement ATM System through State Chart diagram. 

 
Purpose: 

 
Following are the main purposes of using State chart diagrams: 

 
1. To model dynamic aspect of a system. 

2. To model life time of a reactive system. 

: Bank 

server 

: ATM 

machine 

custome 

  r  



26  

3. To describe different states of an object during its life time. 

4. Defines a state machine to model states of an object. 

 
Procedure:- 

 

Step1: First after initial state control undergoes transition to ATM screen. 

 

Step2: After inserting card it goes to the state wait for pin. 

 

Step3: After entering pin it goes to the state account verification. 

 

Step4:. In this way it undergoes transitions to various states and finally reaches the ATM screen state 

as shown in the fig. 

 

 
 

DIAGRAM: 



27  

STATE CHART FOR ATM 

 

 

 

idle enter/pressed ready 

 

 
 

press [first digit>0] 

 

 

next 

number 

enter/pressed validate invalid 

 

 

valid 

 

transactions  cancel pressed cancel 

 

 
 

complete cancelled 

 

 

 

 

 

 

 

F) NAME OF EXPERIMENT: Activity diagram for ATM System. 

 
AIM: To design and implement ATM System through Activity Diagram. 

 
THEORY: An activity diagram shows the flow from activity to activity .An activity is an ongoing non 

atomic execution within a state machine .Activities ultimately results in some action, which is made up 

of executable atomic computations. We can use these diagrams to model the dynamic aspects of a 

system. 

 
Activity diagram is basically a flow chart to represent the flow form one activity to another . The 

activity can be described as an operation of the system. So the control flow is drawn from one 

operation to another. This flow can be sequential, branched or concurrent. Activity diagrams deals 

with all type of flow by using elements like fork, join etc. 

 

Contents 

 
Initial/Final State, Activity, Fork & Join, Branch, Swim lanes 



28  

Fork 

A fork represents the splitting of a single flow of control into two or more concurrent Flow of control. 

A fork may have one incoming transition and two or more outgoing transitions, each of which 

represents an independent flow of control. Below fork the activities associated with each of these path 

continues in parallel. 

 
Join 

A join represents the synchronization of two or more concurrent flows of control. A join may have 

two or more incoming transition and one outgoing transition. Above the join the activities associated 

with each of these paths continues in parallel. 

 
Branching 

A branch specifies alternate paths takes based on some Boolean expression Branch is represented by 

diamond Branch may have one incoming transition and two or more outgoing one on each outgoing 

transition, you place a Boolean expression shouldn‟t overlap but they should cover all possibilities. 

 
Swimlane: 

Swimlanes are useful when we model workflows of business processes to partition the activity states 

on an activity diagram into groups. Each group representing the business organization responsible for 

those activities, these groups are called Swimlanes . 

 
Procedure:- 

 

Step1: First initial state is created. 

 

Step2: After that it goes to the action state insert card. 

 

Step3: Next it undergoes transition to the state enter pin 

Step4: In this way it undergoes transitions to the various states. 

Step5: Use forking and joining wherever necessary. 



29  

DIAGRAM: Activity diagram for Transactions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activity diagram for Withdraw: 



30  

 

 

 

 

 
customer ATM bank serv er 

 

 

 

insert card 

 

 
 

 
 

enter PIN validate PIN 

 

 

 
 

 

 
 
 

select 

transaction 

 

 

 

 

 

 

 

 
receive cash 

 

 

 

 

 

 
 

:receipt 

print 

start transaction 
:validation 

[success] 
 

 

 

 

 

 

 

:transaction 

withdraw 

 

 

 

 

 

 

 

close 

transaction 

 

 

 

 
 

 

 
 

Inferences: 

 
1. Identify the action states of the objects . 

2. Understand the transitions and events for various objects. 



31  

G) NAME OF EXPERIMENT: Component diagram for ATMSystem. 

 
AIM: To design and implement Component diagram for ATM System. 

THEORY: 

Component diagrams are used to model physical aspects of a system. Physical aspects are the 

elements like executables, libraries, files, documents etc which resides in a node. So component 

diagrams are used to visualize the organization and relationships among components in a system. 

These diagrams are also used to make executable systems. 

 
Purpose: 

 
Component diagrams can be described as a static implementation view of a system. Static 

implementation represents the organization of the components at a particular moment. A single 

component diagram cannot represent the entire system but a collection of diagrams are used to 

represent the whole. 

 

Before drawing a component diagram the following artifacts are to be identified clearly: 

 
• Files used in the system. 

• Libraries and other artifacts relevant to the application. 

• Relationships among the artifacts. 

• Now after identifying the artifacts the following points needs to be followed: 

 
• Use a meaningful name to identify the component for which the diagram is to be drawn. 

• Prepare a mental layout before producing using tools. 

• Use notes for clarifying important points. 

 
Contents 

 

Components, Interfaces, Relationships 

 
Procedure:- 

 

Step1: First user component is created. 

 

Step2: ATM system package is created. 

 

Step3: In it various components such as withdraw money, deposit money, check balance, transfer 

money etc. are created. 



32  

Step4: Association relationship is established between user and other components. 

 

DIAGRAM: 
 

 
 

 

 

 

 

 
withdraw 

 
 

balance 
enquiry 

bank 

 

 

 

 

 

 

 

checking 
account 

saving 
account 

 

 

 

 

 

 

 

H) NAME OF EXPERIMENT: Deployment diagram for ATMSystem. 

 
AIM: To design and implement ATM System through Deployment diagram. 

 
Purpose: 

 
Deployment diagrams are used to visualize the topology of the physical components of a system 

where the software components are deployed. So deployment diagrams are used to describe the static 

deployment view of a system. Deployment diagrams are used for describing the hardware 

components where software components are deployed. Component diagrams and deployment 

diagrams are closely related. Component diagrams are used to describe the components and 

deployment diagrams shows how they are deployed in hardware. 

 

Contents: Nodes, Dependency & Association relationships 

 
Procedure:- 

Step1: First user node is created 

customer 
account 

ATM 
Machine 



33  

Step2: various nodes withdraw money, deposit money, and check balance, transfer 

money etc. are created. 

Step4: Association relationship is established between user and other nodes. 

Step5: Dependency is established between deposit money and check balance. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

console 

bank 

server 
Atm machine 

location b 

Atm machine 

location -A 



34  

SOFTWARE TESTING  
 

EXPERIMENT: 1 

NAME OF THE EXPERIMENT: Write program in „C„ language to demonstrate the working of 
the following constructs 

 
 

i.)do..while: 

 

Syntax: 

Iteration-statement: 

do statement while ( expression ) ; 

Example: 

#include<stdio.h> 

#include<conio.h> 

#include <stdio.h> 

 
main() 

{ 

 
 

nt i = 10; 
 

do{ 

printf("Hello %d\n", i ); 

i = i -1; 

if( i == 6 ) 

{ 

break; 

} 

}while ( i > 0 ); 

} 



35  

 

 

 

 

 

 

ii.) do..while 

while(condition) 

{ 

Loop body 

Increment or decrement; 

} 

 

 

 

 

 

Example: 

#include<stdio.h> 

int main() 

{ 

 

 

 

 

 

 

 

 

 

 

} 

 

 

 
iii) if…else 

 
int counter, howmuch; 

 
scanf("%d", &howmuch); 

counter = 0; 

while ( counter < howmuch) 

{ 

counter++; 

printf("%d\n", counter); 

} 

return 0; 

 

syntax: 

if( condition 1 ) 

statement1; 

else if( condition 2 ) 

statement2; 

else if( condition 3 ) 

statement3; 

else 

statement4; 

 
example: 



36  

#include<stdio.h>  

int main(){ 

int x,y; 

printf("Enter value for x :"); 

scanf("%d",&x); 

printf("Enter value for y :"); 

scanf("%d",&y); 

if ( x > y ){ 

printf("X is large number - %d\n",x); 

} 

else{ 

 
} 

 

 
printf("Y is large number - %d\n",y); 

return 0; 

} 
 

 

 

 

 

 

 

iv) switch 

 

syntax:  
swithch(int/char const) 

{ 

Case const 1:stm1; 

Break; 

Case const 2:stmt2; 

Break; 

} 

} 

 

 
} 

 

 

Example: 

default: stmt n; 

Break; 

 

#include <stdio.h> 

 

int main() { 

int color = 1; 

printf("Please choose a color(1: red,2: green,3: blue):\n"); 

scanf("%d", &color); 

 
switch (color) 
{ 



37  

case 1: 

printf("you chose red color\n"); 

break; 

case 2: 

printf("you chose green color\n"); 

break; 

case 3: 

printf("you chose blue color\n"); 

break; 

default: 

printf("you did not choose any color\n"); 

} 

return 0; 

} 
 

 

 

 

 

 

 

 
 

v) for Syntax: 

 
for (initialization; condition; increment/decrement) 

{ 

//body of the loop 

} 
 

Example: 

#include <stdio.h> 

 
int main() 

{ 

int x; 

/* The loop goes while x < 10, and x increases by one every loop*/ for ( x = 0; x 

< 10; x++ ) 

{ 

 
/* Keep in mind that the loop condition checks the 

conditional statement before it loops again. consequently, 

when x equals 10 the loop breaks. x is updated before the 

condition is checked. */ 

 

printf( "%d\n", x ); 

} 

getchar(); 

} 



38  

Viva questions: 

1. How to find entered number is EVEN or ODD without using conditional statement (not 
using if.. else, while, do... while...., for ... ) 

2. Write a function to swap any two numbers? 

3. How can we find out prime numbers from 1 to 50? 



39  

EXPERIMENT: 2 

NAME OF THE EXPERIMENT: 

Write a C program that uses functions to perform the following: 

ii) Multiplication of Two Matrices*/ 

 
 

#include<stdio.h> 

#include<conio.h> 

Void main() 

{ 

int a[10][10], b[10][10], m[10][10], i, j, p, q, r, s, k; clrscr (); 

printf(―enter the size of A Matrix‖); 

scanf(―%d %d‖, &p, &q); 

printf(―Enter the size of B Matrix ‖); 

scanf(―%d %d ―, &r, &s); 

if(q=r) 

{ 

printf(―Enter the elements of matrix A:\n‖); 

for(i=0; i<p; i++) 

{ 

for(j=0; j<q; j++) 

{ 

scanf(―%d‖, &a[i][j]); 

} 

} 

printf(―Enter the elements of matrix b:\n‖); for(i=0; 

i<r; i++) 

{ 

for(j=0; j<s; j++) 

{ 

scanf(―%d‖, &b[i][j]); 

} 

} 

for (i=0; i<p; i++) 

{ 

for(j=0; j<s; j++) 

{ 

m[i][j]=0; 

for(k=0; k<q; k++) 

{ 

m[i][j] =m[i][j] +a[i][j] * b[k][j]; 

} 

}} 
 

Printf(―matrix multiplication is:\n‖); 

for(i=0; i<p; i++) 

{ 

for(j=0; j<s; j++) 

{ 

Printf(―%d\t‖, m[i][j]); 

} 



40  

 

 

 
else 

` Printf(―\n‖); 

} 

} 

printf(―matrix multiplication is not possible‖); 

getch(); 

} 

FAILURE CASES: 

output: 

1. Enter the size of a: 2 3 

Enter the size of b: 2 3 

Matrix multiplication is not possible. 

Reason to fail: to do multiplication of matrices the number of columns in matrix ―a[] should be 

equal to number of rows in matrix ―b‖. 

2. Enter the size of a: p q 
Enter the size of b: q s 

Matrix multiplication is not possible. 

Reason to fail: to do multiplication of matrices the number of columns in matrix ―a‖ should be 

equal to number of rows in matrix ―b‖, and rows & columns should be integer values. 

3. Enter the size of a: 1.5 2 

Enter the size of b: 2 3 

Matrix multiplication is not possible. 

Reason to fail: to do multiplication of matrices the number of columns in matrix ―a‖ should be 

equal to number of rows in matrix ―b‖, and rows & columns should be integer values. 

4. Enter the size of a: 350 480 Enter 

the size of b: 480 620 

Matrix multiplication is not possible. 

Reason to fail: size of buffer will be not be sufficient to handle this multiplication. 

5. Enter the size of a: -1 -2 

Enter the size of b: -2 3 

Matrix multiplication is not possible. 

Reason to fail: to do multiplication of matrices the number of columns in matrix ―a‖ should be 

equal to number of rows in matrix ―b‖, and rows & 

columns should be positive integer values. 

viva questions: 

1. syntax for multiplication 

2. syntax for matrix multiplication 

3. what the logic for matrix multiplication? 



41  

EXPERIMENT: 3 

NAME OF THE EXPERIMENT: ATM system specifications and report the various bugs 

Purpose: 

This document describes the software requirements and specification (SRS) for an automated 

teller machine (ATM) network. The document is intended for the customer and the developer 
(designers, testers, maintainers). The reader is assumed to have basic knowledge of banking accounts 

and account services. Knowledge 

and understanding of Unified Modeling Language (UML) diagrams is also required. 

 

Scope: 

The software supports a computerized banking network called ‗Bank24„. The network enables 

customers to complete simple bank account services via automated teller machines (ATMs) that may 
be located off premise and that need not be owned and operated by the customer„s bank. The ATM 

identifies a customer by a cash card and password. It collects information about a simple account 

transaction (e.g., deposit, withdrawal, transfer, bill payment), communicates the transaction 

information to the customer„s bank, and dispenses cash to the customer. The banks provide their own 
software for their own computers. The 

‗Bank24„ software requires appropriate record keeping and security provisions. The software must 

handle concurrent accesses to the same account correctly. 

Intended Audience: 

The intended audience of this SRS consists of: 

 Software designers 

 Systems engineers 
 Software developers 

 Software testers 

 Customers 

The actors of the system are: 

1. User 

2. ATM Machine 
3. Bank 

Product Perspective: 

An automated teller machine (ATM) is a computerized telecommunications device that provides the 

customers of a financial institution with access to financial transactions in a public space without the 
need for a human clerk or bank teller. On most modern ATMs, the customer is identified by inserting 

a plastic ATM card with a magnetic stripe or a plastic smartcard with a chip, that contains a unique 

card number and some security information, such as an expiration date or CVC (CVV). Security is 
provided by the customer entering a personal identification number (PIN). 

Product functions: 

Using an ATM, customers can access their bank accounts in order to make cash withdrawals (or 

credit 

card cash advances) and check their account balances. 

The functions of the system are: 

1. Login 
2. Get Balance Information 

3. Withdraw Cash 
4. Transfer Funds 

 
Operating Environments: 
The hardware,software and technology used should have following specifications: 

 Ability to read the ATM card. 

 Ability to count the currency notes. 

 Touch screen for convenience. 

 Keypad(in case touchpad fails) 
 Continuous power supply. 



42  

 Ability to connect to bank„s network. 

 Ability to validate user. 

 
 

Design/implementation constraints: 

Login: 

Validate Bank Card 

 Validate for Card Expiration Date 

 Validate that the card's expiration date is later than today's date 
 If card is expired, prompt error message "Card is expired" 

Validate for Stolen or Lost Card 

 Validate that the card is not reported lost or stolen 

 If card is lost, prompt error message, "Card has been reported lost" 

 If card is stolen, prompt error message, "Card has been reported stolen" 

Validate for Disabled Card 

 Validate that the card is not disabled 

 If card is disabled, prompt error message, "Card has been disabled as of <expiration 
date>" 

Validate for Locked Account 

Validate that the account is not locked 

 If account is locked, prompt error message "Account is locked" 

Validate PIN 

 Validate that the password is not blank 

 If PIN is blank, prompt error message "Please provide PIN" 

 Validate that the password entered matches the password on file 

 If password does not match, prompt error message "Password is Incorrect" 

Lock Account 

 If number of consecutive unsuccessful logins exceeds three attempts, lock 

account 

Maintain Consecutive Unsuccessful Login Counter 

Increment Login Counter 

For every consecutive Login attempt, increment logic counter by 1. 

Reset login counter to 0 after login is successful. 

Get Balance Information 

Withdraw Cash 

Transfer Funds 

 
 

Assumptions and Dependencies: 

 Hardware never fails 

 ATM casing is impenetrable 

 Limited number of transactions per day (sufficient paper for receipts) 
 Limited amount of money withdrawn per day (sufficient money) 

 
 

External Interface Requirements 

User interfaces 

The customer user interface should be intuitive, such that 99.9% of all new ATM users are able to 



43  

complete their banking transactions without any assistance. 

 

 

 

 
Hardware interfaces 

The hardware should have following specifications: 

 Ability to read the ATM card 

 Ability to count the currency notes 

 Touch screen for convenience 

 Keypad (in case touchpad fails) 
 Continuous power supply 

 Ability to connect to bank„s network 
 Ability to take input from user 
 Ability to validate user 

Software interfaces 

The software interfaces are specific to the target banking software systems. At present, two known 

banking systems will participate in the ATM network. 

 State Bank 
 Indian Overseas Bank 

 
 

Safety requirements: 

Must be safe kept in physical aspects, say in a cabin 

 Must be bolted to floor to prevent any kind of theft 

 Must have an emergency phone outside the cabin 

 There must be an emergency phone just outside the cabin 
 The cabin door must have an ATM card swipe slot 

 The cabin door will always be locked, which will open only when user swipes his/her ATM 
card in the slot & is validated as genuine 

 
 

Security requirements: 

 Users accessibility is censured in all the ways 

 Users are advised to change their PIN on first use 
 Users are advised not to tell their PIN to anyone 
 The maximum number of attempts to enter PIN will be three 

Some of the possible Bugs on ATM machine? 

1. 1.Successful insertion of ATM card 

2. Unsuccessful operation due to insert card in wrong angle 

3. Unsuccessful operation due to invalid account Ex: other bank card or time expired card 

4. successful entry of PIN number 

5. un successful operation due to enter wrong PIN number 3times 

6. successful selection of language 

7. successful selection of account type 

8. unsuccessful operation due to invalid account type 

9. successful selection of withdraw operation 

10. successful selection of amount to be withdrawl 

11. successful withdraw operation 



44  

12. unsuccessful withdraw operation due to wrong denominations 

13. unsuccessful withdraw operation due to amount is greater than day limit 

14. unsuccessful withdraw operation due to lack of money in ATM 

 
15. unsuccessful withdraw operation due to amount is greater than possible balance 

16. unsuccessful withdraw operation due to transactions is greater than day limit 

17. unsuccessful withdraw operation due to click cancel after insert card 

18. unsuccessful withdraw operation due to click cancel after insert card & pin number 

19. unsuccessful withdraw operation due to click cancel after insert card , pin number & language 

20. unsuccessful withdraw operation due to click cancel after insert card , pin number , language 

&account type 

21. unsuccessful withdrawal operation due to click cancel after insert card , pin number , 

language ,account type & withdrawal operation 

22. unsuccessful withdrawal operation due to click cancel after insert card , pin number , 

language ,account type ,withdrawal operation &amount to be withdraw 



45  

EXPERIMENT: 4 
 

NAME OF THE EXPERIMENT: Test cases for banking applications 

Banking applications are considered to be one of the most complex applications in today„s software 

development and testing industry. What makes Banking application so complex? What approach 

should be followed in order to test the complex workflows involved? In this article we will be 
highlighting different stages and techniques involved in testing Banking applications. The 

characteristics of a Banking application are as follows: 

 Multi tier functionality to support thousands of concurrent user sessions 

 Large scale Integration , typically a banking application integrates with numerous other 
applications such as Bill Pay utility and Trading accounts 

 Complex Business workflows 

 Real Time and Batch processing 

 High rate of Transactions per seconds 

 Secure Transactions 

 Robust Reporting section to keep track of day to day transactions 

 Strong Auditing to troubleshoot customer issues 

 Massive storage system 

 Disaster Management. 

The above listed ten points are the most important characteristics of a Banking application. 

Banking applications have multiple tiers involved in performing an operation. For Example, a 

banking application may have: 

1. Web Server to interact with end users via Browser 

2. Middle Tier to validate the input and output for web server 

3. Data Base to store data and procedures 

4. Transaction Processor which could be a large capacity Mainframe or any other Legacy 

system to carry out Trillions of transactions per second. 

If we talk about testing banking applications it requires an end to end testing methodology involving 

multiple software testing techniques to ensure: 

 Total coverage of all banking workflows and Business Requirements 

 Functional aspect of the application 

 Security aspect of the application 

 Data Integrity 

 Concurrency 

 User Experience 

Typical stages involved in testing Banking Applications are shown in below workflow which we 

will be discussing individually. 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

1) Requirement Gathering: 

Requirement gathering phase involves documentation of requirements either as Functional 

Specifications or Use Cases. Requirements are gathered as per customer needs and documented by 

Banking Experts or Business Analyst. To write requirements on more than one subject experts are 

involved as banking itself has multiple sub domains and one full fledge banking application will be 

the integration of all. For Example: A banking application may have separate modules for Transfers, 
Credit Cards, Reports, Loan Accounts, Bill Payments, Trading Etc. 

2) Requirement Review: 

The deliverable of Requirement Gathering is reviewed by all the stakeholders such as QA Engineers, 

Development leads and Peer Business Analysts. They cross check that neither existing business 

workflows nor new workflows are violated. 

3) Business Scenario Preparations: 

In this stage QA Engineers derive Business Scenarios from the requirement documents (Functions 

Specs or Use Cases); Business Scenarios are derived in such a way that all Business Requirements are 

covered. Business Scenarios are high level scenarios without any detailed steps, further these Business 

Scenarios are reviewed by Business Analyst to ensure all of Business Requirements are met and its 
easier for BAs to review high level scenarios than reviewing low level detailed Test Cases. 

 

 

 

 

 

 

 

 

 

 

46 

http://www.softwaretestinghelp.com/how-to-test-software-requirements-specification-srs/


47  

4) Functional Testing: 

In this stage functional testing is performed and the usual software testing activities are performed 
such as: 

Test Case Preparation: 

In this stage Test Cases are derived from Business Scenarios, one Business Scenario leads to several 

positive test cases and negative test cases. Generally tools used during this stage are Microsoft Excel, 
Test Director or Quality Center. 

Test Case Review: 

Reviews by peer QA Engineers 

Test Case Execution: 

Test Case Execution could be either manual or automatic involving tools like QC, QTP or any 

other. 

5) Database Testing: 

Banking Application involves complex transaction which are performed both at UI level and Database 

level, Therefore Database testing is as important as functional testing. Database in itself is an entirely 

separate layer hence it is carried out by database specialists and it uses techniques like 

 Data loading 

 Database Migration 

 Testing DB Schema and Data types 

 Rules Testing 

 Testing Stored Procedures and Functions 

 Testing Triggers 

 Data Integrity 

6) Security Testing: 

Security Testing is usually the last stage in the testing cycle as completing functional and non 
functional are entry criteria to commence Security testing. Security testing is one of the major stages 
in the entire Application testing cycle as this stage ensures that application complies with Federal and 
Industry standards. Security testing cycle makes sure the application does not have any web 
vulnerability which may expose sensitive data to an intruder or an attacker and complies with 
standards like OWASP. 

In this stage the major task involves in the whole application scan which is carried out using tools like 

IBM Appscan or HP WebInspect (2 Most popular tools). 

Once the Scan is complete the Scan Report is published out of which False Positives are filtered out 

and rest of the vulnerability are reported to Development team for fixing depending on the Severity.  

Other Manual tools for Security Testing used are: Paros Proxy, Http Watch, Burp Suite, Fortify 

tools Etc. 

Apart from the above stages there might be different stages involved like Integration Testing and 

Performance Testing. 

In today„s scenario majority of Banking Projects are using: Agile/Scrum, RUP and Continuous 

Integration methodologies, and Tools packages like Microsoft„s VSTS and Rational Tools.  

As we mentioned RUP above, RUP stands for Rational Unified Process, which is an iterative software 
development methodology introduced by IBM which comprises of four phases in which development 

and testing activities are carried out. 

http://www.softwaretestinghelp.com/qtp-functional-testing-tool-review/
http://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-procedures-and-definitions/
http://www.softwaretestinghelp.com/category/database-testing/
http://www.softwaretestinghelp.com/category/security-testing/
http://www.ibm.com/software/awdtools/appscan/
http://www.ibm.com/software/awdtools/appscan/
https://www.fortify.com/products/web_inspect.html
http://parosproxy.org/
http://parosproxy.org/
http://www.portswigger.net/burp/
http://www.portswigger.net/burp/
http://www.portswigger.net/burp/


48  

Four phases are: 

i) Inception 
ii) Collaboration 

iii) Construction and 

iv) Transition 
RUP widely involves IBM Rational tools. 

In this article we discussed how complex a Banking application could be and what are the typical 

phases involved in testing the application. Apart from that we also discussed current trends 

followed by IT industries including software development methodologies and tools. 

Test cases for opening bank account 

1. Input parameters checking - 

Name 

-Date of Birth - 

Photo -Address 

Proof -Identity 

proof 

-Introducers (if applicable) - 

PAN card 

-Initial deposit 

-Whether checkbook / ATM card / Online banking facilities are needed or not -Customer 

signature 

Type of account - 

Savings account -Salary 

account -Joint account - 

Current account - 

Secondary account -RD 

account 

-Account for a company 

Test cases 

-Checking mandatory input parameters -Checking 

optional input parameters -Check whether able to 

create account entity. 

-Check whether you are able to deposit an amount in the newly created account (and thus updating the 

balance) 

-Check whether you are able to withdraw an amount in the newly created account (after deposit) (and 
thus updating the balance) 

-Check whether company name and its pan number and other details are provided in case of salary 
account 

-Check whether primary account number is provided in case of secondary account 
 

-Check whether company details are provided in cases of company's current account 

-Check whether proofs for joint account is provided in case of joint account 

-Check whether you are able deposit an account in the name of either of the person in an joint 



49  

account. 

-Check whether you are able withdraw an account in the name of either of the person in an joint 

account. 

 

 
-Check whether you are able to maintain zero balance in salary account 

-Check whether you are not able to maintain zero balance (or mini balance) in non-salary account. 

 
 

viva questions 

1. Can you explain boundary value analysis? 

2. Can you explain equivalence partitioning? 

3. Can you explain random/monkey testing? 

4. What are semi-random test cases? 

5. What is negative and positive testing? 

6. How did you define severity ratings in your project? 



50  

EXPERIMENT: 5 

NAME OF THE EXPERIMENT: Test plan document for library application 

The Library Management System is an online application for assisting a librarian in managing a book 

library in a University. The system would provide basic set of features to add/update clients, 

add/update books, search for books, and manage check-in / checkout processes. Our test group tested 
the system based on the requirement specification. 

INTRODUCTION 

This test report is the result for testing in the LMS. It mainly focuses on two problems: what we will 

test and how we will test. 

Result 

GUI test 

Pass criteria: librarians could use this GUI to interface with the backend library database without any 
difficulties 

Result: pass 

Database test 

Pass criteria: Results of all basic and advanced operations are normal (refer to section 4) 

Result: pass 

Basic function test 

Add a student 

Pass criteria: 

 Each customer/student should have following attributes: Student ID/SSN (unique), Name, 

Address and Phone number. 

Result: pass 

 The retrieved customer information by viewing customer detail should contain the four attributes. 

Result: pass 

Update/delete student 

Pass criteria: 

 The record would be selected using the student ID Result: 

pass 

 Updates can be made on full. Items only: Name, Address, Phone number Result: pass 

 The record can be deleted if there are no books issued by user. 

Result: Partially pass. When no books issued by user, he can be deleted. But when there are 

books Issued by this user, he was also deleted. It is wrong. 

 The updated values would be reflected if the same customer's ID/SSN is called for. 

Result: pass 

 If customer were deleted, it would not appear in further search queries. 

Result: pass 

Add a book 

Pass criteria: 

 Each book shall have following attributes: Call Number, ISBN, Title, Author name. 

Result: pass 

 The retrieved book information should contain the four attributes. 

Result: pass 

Update/delete book 

Pass criteria: 

 The book item can be retrieved using the call number Result: did not 

pass. Can not retrive using the call number 

 The data items which can be updated are: ISBN, Title, Author name Result: pass 

 The book can be deleted only if no user has issued it. 



51  

Result: partially pass. When no user has issued it, pass. When there are user having issued it, 

did not pass 

 The updated values would be reflected if the same call number is called for Result: pass 

 If book were deleted, it would not appear in further search queries. Result: pass 

Search for book 

Pass criteria: 

 The product shall let Librarian query books„ detail information by their ISBN number or Author 

or Title. 

Result: pass 

 The search results would produce a list of books, which match the search parameters with 

following Details: Call number, ISBN number, Title, Author Result: pass 

 The display would also provide the number of copies which is available for issue Result: pass 

 The display shall provide a means to select one or more rows to a user-list Result: pass 

 A detailed view of each book should provide information about check-in/check out status, with 

the borrower„s information. 

Result: pass 

 The search display will be restricted to 20 results per page and there would be means to navigate 

from sets of search results. 

Result: pass 

 The user can perform multiple searches before finally selecting a set of books for check in or 

checkout. These should be stored across searches. 

Result: pass 

 A book may have more than one copy. But every copy with the same ISBN number should have 

same detail information. 

Result: pass 

 The borrower„s list should agree with the data in students„ account 

Result: pass 

Check-in book 

Pass criteria: 

 Librarians can check in a book using its call number 

Result: pass 

 The check-in can be initiated from a previous search operation where user has selected a set of 

books. 

Result: pass 

 The return date would automatically reflect the current system date. Result: did not 

pass. 

 Any late fees would be computed as difference between due date and return date at rate of 10 

cents a day. 

Result: did not pass 

 A book, which has been checked in once, should not be checked in again Result: pass 

Check-out book 

Pass criteria: 

 Librarians can check out a book using its call number Result: pass 

 The checkout can be initiated from a previous search operation where user has selected a set of 

books. 

Result: pass 

 The student ID who is issuing the book would be entered 

Result: pass 

 The issue date would automatically reflect the current system date. Result: did not 

pass 



52  

 The due date would automatically be stamped as 5 days from current date. Result: did not 

pass 

 

 

 
 A book, which has been checked out once, should not be checked out again Result: pass 

 A student who has books due should not be allowed to check out any books Result: did not 

pass 

 The max. No of books that can be issued to a customer would be 10. The system should not allow 

checkout of books beyond this limit. 

Result: pass 

View book detail 

Pass criteria: 

 This view would display details about a selected book from search operation Result: pass 

 The details to be displayed are: Call number, IBN, Title, Author, Issue status (In library or 

checked out), If book is checked out it would display, User ID & Name, Checkout date, Due date 

Result: for checkout date and due date, did not pass 

 Books checked in should not display user summary 

Result: pass 

 Books checked out should display correct user details. Result: 

pass 

View student detail 

Pass criteria: 

 Librarians can select a user record for detailed view Result: 

pass 

 The detail view should show: 
 

a.User name, ID, Address & Phone number Result: 

pass 

b. The books issued by user with issue date, due date, call number, title Result: did not 

pass 

c. Late fees & Fines summary and total 

Result: did not pass 

 The display should match existing user profile Result: 

pass 

 The books checked out should have their statuses marked Result: pass 

 The book search query should show the user id correctly. Result: pass 

Network test 

Pass criteria: Results of operations (ping, ftp and ODBC connectivity check) are normal 

Result: did not test this item, because no enough machines and no available envirenment. 

Viva questions 

1. How to create a test plan document for Library Management System? 

2. what is object repository 

3. How many test cases can u write 1) File - open dialog box in notepad please 

write 5 if software failed in customer environment what we called a)error b)fault c)defect d)failure 

4.What test plan should contains? 

5. What is test strategy? 

6. Define test Plan?What is the difference between Master Test Plan and Test Plan? 



53  

EXPERIMENT: 6 

NAME OF THE EXPERIMENT: Study of Any Testing Tool( WinRunner) 

WinRunner is a program that is responsible for the automated testing of software. WinRunner is a 
Mercury Interactive„s enterprise functional testing tool for Microsoft windows applications. 

 

Testing an Application using WinRunner 

After installing the WinRunner on your computer, invoke the WinRunner application: 

Start -> Programs ->WinRunner ->WinRunner 

The opening screen of the WinRunner application is displayed, prompting you to select one of the 

three options: 

New Test: To create a new test scriptOpen Test: To open an existing test scriptQuick Preview: To 

view the quick preview of WinRunner 

 

Recording Test Cases 

There are two modes of recording: 

Context Sensitive mode: This mode of recording is used when the location of the GUI controls (i.e. X 
and Y coordinates) or the mouse positions are not necessary.Analog mode: This mode of recording is 

used when the mouse positions, the location of the controls in the application, also play an important 

role in testing the application. This mode of recording has to be used to validate bitmaps, testing the 

signature etc. 

The procedure for recording a test case is as follows: 

Step 1: Open a new document: File -> New (or) Select "New Test" from the WinRunner's Welcome 

screen. 

Step 2: Open (run) the application to be tested. 

Step 3: Start recording a test case. Create ->Record - Context Sensitive (or) click on the toolbar's 

"Record" button once, to record in Context Sensitive mode. 

Step 4: Select the application to be tested by clicking on the application's title bar. 

Step 5: Perform all the actions to be recorded. 

Step 6: Once all required actions are recorded, stop the recording. Create -> Stop (or) Click on the 

toolbar's "Stop" button to stop the recording WinRunner generates the script for the recoded actions. 

There are two modes for generating the test cases: "Global GUI map file mode" and "GUI map file 

per test mode". By default, it is in "Global GUI map file mode". 

In Global GUI map file mode, you have to explicitly save the information learnt by WinRunner. 

WinRunner saves it in a file with extension "gui". When you have to run a test, you need to load the 

corresponding GUI map file; otherwise it will not be able to recognize the objects in the test case and 
displays an error message 



54  

The procedure for saving the GUI map file in Global GUI map file mode is as follows: 

Step 1: Record a test case by following the preceding procedure. 

Step 2: Open the GUI Map Editor window as shown in Fig. Tools -> GUI Map Editor 
 

Step 3: On selecting the GUI Map Editor.The screen as shown in figure is displayed 
 

Step 4: Save the GUI Map file. File -> Save As A File dialog appears and you need to enter the 

filename. 

Step 5: Close the GUI Map Editor window. 

The procedure for loading the GUI map file is as follows: 

Step 1: Open the GUI Map Editor. Tools -> GUI Map Editor 

Step 2: Close all the opened GUI Map files File -> Close all. 



55  

 
 

The procedure for running a test case is as follows: 

Step 1: Open the test script to be executed. 

Step 2: Run the test Run -> Run from top (or) press F5 to run the test. 

WinRunner executes the generated script and displays the results in the Test Results window.We will 

now illustrate using WinRunner to test the "Standard Calculator" application available on your 

Windows system.You can invoke the calculator application from the desktop Start -> Programs -> 

Accessories -> Calculator. The GUI of the "Calculator" application is shown in Fig. 

The symbols on the buttons of Calculator application represent the following functions: 
 

To perform addition 

To perform subtraction 

To perform multiplication 

To perform division 

Decimal point 

To find square root of a number 

To find percent 

To find inverse of a number 

To clear the memory 

To recall from memory 

To save in the memory 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

+ 

- 

* 

/ 

. 

sqrt 

% 

1/x 

MC 

MR 

MS 



56  

 

To test the complete functionality of the application, we need to generate test cases in such a way that 

all the buttons are made use of. We need to generate some test cases which will give correct output 

and also some test cases which will give error messages. Table gives such test cases and the expected 

output for each test case. 

Test Cases and the Expected Output for Testing the Calculater 
 

To test the functionality of the application perform the following steps: 

Test Case #1: To test the Inverse operation (inverse of 4 using 1/x button) 

Step 1: Open WinRunner application. 

Step 2: Open Calculator application. 

Step 3: Create a new document as shown in Figure. File -> New or Click Q (New) on tool bar or press 

Ctrl+N 

Step 4: Start recording Create -> Record-Context Sensitive (or) press F2 (or) Click # on the toolbar 

To add to the memory 

To clear the current calculation 

To clear the displayed number 

To give sign to a number (positive or negative) 

To remove left most digit Backspace: 

: 

: 

: 

: 

M+ 

C 

CE 

+/- 



57  

Click the (Record-Context Sensitive) button on the toolbar of WinRunner as shown in Figure or Select 

"Record - Context sensitive" option from the "Create" menu as shown in Figure. 

Step 5: Select the Calculator application and start recording the actions. a Click "4" on the 

Calculator 

Click the "1/x" button on the Calculator to find the inverse of 4.The result, 0.25 will be displayed on 
the Calculator. 

Step 6: Stop the Recording process. 

Create -> Stop Recording (or) Click (Stop) on toolbar Click (Stop Recording) button on the toolbar of 

WinRunner as shown in Figure or Select the "Stop Recording" option from the "Create" menu as 

shown in Figure. 
 

Step 8: Save the file as "inverse" in the selected folder. 

File -» Save In the "Save" dialog box that appears, save the test script with name "inverse". 

Step 9: Run the test script generated by WinRunner. Run -> Run from Top or press F5 or Click (Run 



58  

from Top) on the toolbar Click the (Run from Top) button on the toolbar of WinRunner as shown in 

Figure or select the "Run from Top" option from the "Run" menu as shown in Figure. 

Step 10: After executing the TSL statements, WinRunner generates test results as shown in Figure. 

The Results column indicates whether the test has "Passed" or "Failed". The test results also give 

useful information such as the name of the test case, the line numbers in the test script and the time 

taken for executing the test case. 

 

You can use the same procedure explained above for recording the test case. The following test script 

will be generated: 

When you run the test script again, you can see the test results, as in Figure. 

#Calculator 

winactivate("Calculator"); 

set_window("Calculator",1); 

obj_mouse_click ("Button_38",20,12,LEFT); 

objmousedrag ("Button_35",10,15,11,14,LEFT); 

obj_mouse_click ("Button_60",20,11,LEFT); 



59  

 
 

Calling the Test Cases using "call" Function 

The "call" function can oeused to execute a series of test cases without any user interaction. The 

syntax of call function is: call for example, call testl(); 

Create a new documentWrite the following test scriptSave the file as "callAll"Execute the test case 

All the preceding test cases can be combined into one file as follows: 
 

When you execute this test script, all the earlier test cases are executed in one shot. The test results 

screen will be as shown in Figure. As you can see from the table, the "Details" column gives the 

various test cases executed. The "Result" column shows whether the test has passed or failed. The 

"Time" column gives the time taken to execute the test case. 

When you have to retest the application using the same test cases, you can run the script in unattended 

mode. You can save the script in a file and run the script at specified time. 

This feature of WinRunner is extremely useful for regression testing. When you are developing the 

software, you need to run the same set of test cases many times. So, you can run the application once, 

call inverseO; call sqrootO; 

call clearO; 

call MultiplayO; 

call divideO; 

call add_subtract() 

call PercentO; 

call msjnrO; 

call maddmrO; 

call mclearO; 

call backspaceO; 



60  

generate the test script and then keep doing the regression testing. Obviously, the productivity of the 

test engineers will be very high when this tool is used. 

Viva questions 

1. Explain WinRunner testing process? 

2. What is contained in the GUI map? 
3. How does WinRunner evaluate test results? 

4. What is the use of GUI map? 

5. What happens when GUI map file get loaded? 



61  

EXPERIMENT: 7 

NAME OF THE EXPERIMENT: Study of any web testing tool (e.g. Selenium) 

What is Selenium? 

JavaScript framework that runs in your web browser Works anywhere JavaScript is supported 

Hooks for many other languages Java, Ruby, Python Can simulate a user navigating through pages 

and then assert for specific marks on the pages All you need to really know is HTML to start using it 

right away 

 
Selenium IDE 

 

Selenium Integrated Development Environment (IDE) is a Firefox plugin that lets testers to record 

their actions as they follow the workflow that they need to test. 

It provides a Graphical User Interface for recording user actions using Firefox which is used to learn 

and use Selenium, but it can only be used with Firefox browser as other browsers are not supported.  

However, the recorded scripts can be converted into various programming languages supported by 

Selenium and the scripts can be executed on other browsers as well. 

 

Selenium- IDEDownload 

Step 1 − Launch Firefox and navigate to the following URL - http://seleniumhq.org/download/. 
 

Under the Selenium IDE section, click on the link that shows the current version number as shown 

below. 

Step 2 − Firefox add-ons notifier pops up with allow and disallow options. User has to allow the 

installation. 

 

http://www.seleniumhq.org/download/


62  

Step 3 − The add-ons installer warns the user about untrusted add-ons. Click 'Install Now'. 
 

Step 4 − The Selenium IDE can now be accessed by navigating to Tools >>Selenium IDE. 
 

Step 5 − The Selenium IDE can also be accessed directly from the quick access menu bar as shown 

below. 

 
 
 

Selenium IDE Features 

This section deals with the features available in Selenium IDE. 
 

The following image shows the features of Selenium IDE with the help of a simple tool-tip. 

https://www.tutorialspoint.com/selenium/selenium_ide_tool_features.htm


63  

 
 

 

The features of the record tool bar are explained below. 
 

Control Control Name Description 

 

 

Speed Control This helps in controlling the speed of the 

test case runs. 

 

 

Run All Executes the entire test suite that contains 

multiple test cases. 

 

 
Run Executes the currently selected test. 

 

 

Pause/Resume Allows user to pause or resume the script 

execution. Enabled only during the 
execution. 

 

 

Step Helps user to debug the test by executing 

only one step of a test case at a time. 

 
 

 

Test Runner Mode Allows user to execute the test case in a 

browser loaded with the selenium Core. It 

is an obsolete functionality that likely to 
be deprecated. 

 

 

Apply Rollup Rules This features allows repetitive sequences 

of selenium commands to be grouped into 

a single action. 

 

 

Record This features helps user to Records the 

user's browser actions. 



64  

Creating Selenium IDE Tests 

This section deals with how to create IDE tests using recording feature. 

The following steps are involved in creating Selenium tests using IDE − 

 Recording and adding commands in a test 

 Saving the recorded test 

 Saving the test suite 

 Executing the recorded test 

Recordingand Adding Commandsina Test 

We will use www.ncalculators.com to demonstrate the features of Selenium. 
 

Step 1 − Launch the Firefox browser and navigate to the website - https://www.ncalculators.com/ 
 

Step 2 − Open Selenium IDE from the Tools menu and press the record button that is on the top- 

right corner. 

 

 
Step 3 − Navigate to "Math Calculator" >> "Percent Calculator >> enter "10" as number1 and 50 as 

number2 and click "calculate". 

https://www.tutorialspoint.com/selenium/selenium_ide_test_creation.htm
http://www.ncalculators.com/
https://www.ncalculators.com/


65  

Step 4 − User can then insert a checkpoint by right clicking on the webelement and select "Show all 

available commands" >> select "assert text css=b 5" 

Step 5 − The recorded script is generated and the script is displayed as shown below. 
 

Savingthe Recorded Test 

Step 1 − Save the Test Case by navigating to "File" >> "Save Test" and save the file in the location 

of your choice. The file is saved as .HTML as default. 

The test can also be saved with an extension htm, shtml, and xhtml. 



66  

 

Savingthe Test Suite 

A test suite is a collection of tests that can be executed as a single entity. 
 

Step 1 − Create a test suite by navigating to "File" >> "New Test Suite" as shown below. 
 

Step 2 − The tests can be recorded one by one by choosing the option "New Test Case" from the 

"File" Menu. 



67  

Step 3 − The individual tests are saved with a name along with saving a "Test 

Suite". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Executingthe Recorded Test 

The recorded scripts can then be executed either by clicking "Play entire suite" or "Play current test" 

button in the toolbar. 

Step 1 − The Run status can be seen in the status pane that displays the number of tests passed and 

failed. 

Step 2 − Once a step is executed, the user can see the result in the "Log" Pane. 

 
Step 3 − After executing each step, the background of the test step turns "Green" if passed and "Red" 

if failed as shown below. 

Selenium IDE Script Debugging 

This section deals with debugging the Selenium IDE script. 

 

Debugging is the process of finding and fixing errors in the test script. It is a common step in any 

script development. To make the process more robust, we can make use a plugin "Power Debugger" 

https://www.tutorialspoint.com/selenium/selenium_ide_debugging.htm


68  

for Selenium IDE. 

 
Step 1 − To install Power Debugger for Selenium IDE, navigate to https://addons.mozilla.org/en- 

US/firefox/addon/power-debugger-selenium-ide/ and click "Add to Firefox" as shown below. 

Step 2 − Now launch 'Selenium IDE' and you will notice a new icon, "Pause on Fail" on recording 

toolbar as shown below. Click it to turn it ON. Upon clicking again, it would be turned "OFF". 

 

Step 3 − Users can turn "pause on fail" on or off any time even when the test is running.  

 

Step 4 − Once the test case pauses due to a failed step, you can use the resume/step buttons to 

continue the test execution. The execution will NOT be paused if the failure is on the last command 

of any test case. 

Step 5 − We can also use breakpoints to understand what exactly happens during the step. To insert a 

breakpoint on a particular step, "Right Click" and select "Toggle Breakpoint" from the context- 

sensitive menu. 

https://addons.mozilla.org/en-US/firefox/addon/power-debugger-selenium-ide/
https://addons.mozilla.org/en-US/firefox/addon/power-debugger-selenium-ide/


69  

 

Step 6 − Upon inserting the breakpoint, the particular step is displayed with a pause icon as shown 

below. 

Step 7 − When we execute the script, the script execution is paused where the breakpoint is inserted. 

This will help the user to evaluate the value/presence of an element when the execution is in 

progress. 



70  

 
Inserting Verification Points 

This section describes how to insert verification points in Selenium IDE. 

 
The test cases that we develop also need to check the properties of a web page. It requires assert and 

verify commands. There are two ways to insert verification points into the script. 

To insert a verification point in recording mode, "Right click" on the element and choose "Show all 

Available Commands" as shown below. 

We can also insert a command by performing a "Right-Click" and choosing "Insert New Command". 

https://www.tutorialspoint.com/selenium/selenium_ide_verification_points.htm


71  

 

After inserting a new command, click 'Command' dropdown and select appropriate verification point 

from the available list of commands as shown below. 

Given below are the mostly used verification commands that help us check if a particular step has 

passed or failed. 

 
 verifyElementPresent 

 assertElementPresent 

 verifyElementNotPresent 

 assertElementNotPresent 

 verifyText 

 assertText 

 verifyAttribute 

 assertAttribute 

 verifyChecked 

 assertChecked 



72  

 verifyAlert 

 assertAlert 

 verifyTitle 

 assertTitle 

Synchronization Points 

During script execution, the application might respond based on server load, hence it is required for 

the application and script to be in sync. Given below are few a commands that we can use to ensure 

that the script and application are in sync. 

 
 waitForAlertNotPresent 

 waitForAlertPresent 

 waitForElementPresent 

 waitForElementNotPresent 

 waitForTextPresent 

 waitForTextNotPresent 

 waitForPageToLoad 

 waitForFrameToLoad 

 
Selenium Pattern Matching 

 This section deals with how to work with regular expressions using IDE. 

 

Like locators, patterns are a type of parameter frequently used by Selenium. It allows users to 

describe patterns with the help of special characters. Many a time, the text that we would like to 

verify are dynamic; in that case, pattern matching is very useful. 

Pattern matching is used with all the verification point commands - verifyTextPresent, verifyTitle, 

verifyAlert, assertConfirmation, verifyText, and verifyPrompt. 

There are three ways to define a pattern − 

 
 globbing 

 regular expressions, and 

 exact patterns. 

Globbing 

Most techies who have used file matching patterns in Linux or Windows while searching for a 

certain file type like *.doc or *.jpg. would be familiar with term "globbing" 

Globbing in Selenium supports only three special characters: *, ?, and [ ]. 

 * − matches any number of characters. 
 

 ? − matches a single character. 

https://www.tutorialspoint.com/selenium/selenium_ide_pattern_matching.htm


73  

 [ ] − called a character class, lets you match any single character found within the brackets. 

[0-9] matches any digit. 

To specify a glob in a Selenium command, prefix the pattern with the keyword 'glob:'. For example, 

if you would like to search for the texts "tax year 2013" or "tax year 2014", then you can use the golb 

"tax year *" as shown below. 

However the usage of "glob:" is optional while specifying a text pattern because globbing patterns 

are the default in Selenium. 

Command Target Value 

clickAndWait link = search 
 

verifyTextPresent glob: tax year * 
 

Exact Patterns 

Patterns with the prefix 'exact:' will match the given text as it is. Let us say, the user wants an exact 

match with the value string, i.e., without the glob operator doing its work, one can use the 'exact' 

pattern as shown below. In this example the operator '*' will work as a normal character rather than a 

pattern-matching wildcard character. 

Command Target Value 

clickAndWait link = search 
 

verifyValue exact: *.doc 
 

Regular Expressions 

Regular expressions are the most useful among the pattern matching techniques available. Selenium 

supports the complete set of regular expression patterns that Javascript supports. Hence the users are 

no longer limited by *, ? and [] globbing patterns. 

 

 
To use RegEx patterns, we need to prefix with either "regexp:" or "regexpi:". The prefix "regexpi" is 

case-insensitive. The glob: and the exact: patterns are the subsets of the Regular Expression patterns. 

Everything that is done with glob: or exact: can be accomplished with the help of RegExp. 

Example 

For example, the following will test if an input field with the id 'name' contains the string 'tax year', 

'Tax Year', or 'tax Year'. 



74  

Command Target Value 

clickAndWait link = search 
 

verifyValue id = name regexp:[Tt]ax ([Yy]ear) 

 

 

 

 

 

Selenium User Extensions 

The Java script that allows users to customize or add new functionality. 

 

It is easy to extend Selenium IDE by adding customized actions, assertions, and locator-strategies. It 

is done with the help of JavaScript by adding methods to the Selenium object prototype. On startup, 

Selenium will automatically look through the methods on these prototypes, using name patterns to 

recognize which ones are actions, assertions, and locators. 

Let us add a 'while' Loop in Selenium IDE with the help of JavaScript. 

 

Step 1 − To add the js file, first navigate 

to https://github.com/darrenderidder/sideflow/blob/master/sideflow.js and copy the script and place 

save it as 'sideflow.js' in your local folder as shown below. 

Step 2 − Now launch 'Selenium IDE' and navigate to "Options" >> "Options" as shown below.  
 

 
Step 3 − Click the 'Browse' button under 'Selenium Core Extensions' area and point to the js file that 

we have saved in Step 1. 

https://www.tutorialspoint.com/selenium/selenium_user_extensions.htm
https://github.com/73rhodes/sideflow/blob/master/sideflow.js


75  

 

Step 4 − Restart Selenium IDE. 

 

Step 5 − Now you will have access to a few more commands such as "Label", "While" etc. 

 
Step 6 − Now we will be able to create a While loop within Selenium IDE and it will execute as 

shown below. 

Viva questions: 

1. What is Selenium? 

2. What are the different Selenium components? 

3. What are the testing types that can be supported by Selenium? 
4. What are the limitations of Selenium? 
5. What is Selenese? 



76  

EXPERIMENT: 8 

NAME OF THE EXPERIMENT: Study of Any Bug Tracking Tool (Bugzilla) 

 Introduction 

Bugzilla is a popular bug-tracking system that allows teammates and developers to 

track outstanding bug, Assign, track, and resolve error fixes and conflict resolutions using the 

Bugzilla database Communicate with teammates, Submit and review patches and Manage quality 
assurance (QA). 

Bugzilla is one example of a class of programs called "Defect Tracking Systems", or, 

more commonly, "Bug-Tracking Systems". Defect Tracking Systems allow individual or groups of 

developers to keep track of outstanding bugs in their product effectively. 

 
How to log-in to Bugzilla 

 
Step 1) Use the following link for your handons. To create an account in Bugzilla or to login into the 
existing account go to New Account or Log in option in the main menu. 

 

 

Step 2) Now, enter your personal details to log into Bugzilla 

 
1. User ID 

2. Password 
3. And then click on "Log in" 

 

 

Step 3) You are successfully logged into Bugzilla system 

https://landfill.bugzilla.org/bugzilla-5.0-branch/


77  

 
 

Creating a Bug-report in Bugzilla 

 

 
 

Step 1) To create a new bug in Bugzilla, visit the home-page of Bugzilla and click on NEW tab from 
the main menu 

 

 
 

Step 2) In the next window 

 
1. Enter Product 

2. Enter Component 
3. Give Component description 

4. Select version, 
5. Select severity 

6. Select Hardware 

7. Select OS 
8. Enter Summary 

9. Enter Description 

10. Attach Attachment 
11. Submit 

 
NOTE: The above fields will vary as per your customization of Bugzilla 



78  

 
 
 

NOTE: The mandatory fields are marked with *. 

In our case field's 

 Summary
 Description 

Are mandatory

If you do not fill them you will get a screen like below 
 

Step 4) Bug is created ID# 26320 is assigned to our Bug. You can also add additional information to 

the assigned bug like URL, keywords, whiteboard, tags, etc. This extra-information is helpful to give 
more detail about the Bug you have created. 

 
1. Large text box 
2. URL 

3. Whiteboard 

4. Keywords 
5. Tags 

6. Depends on 
7. Blocks 

8. Attachments 



79  

 
 

Step 5) In the same window if you scroll down further. You can select deadline date and also status of 
the bug. Deadline in Bugzilla usually gives the time-limit to resolve the bug in given time frame. 

 
 
 

Create Graphical Reports 

 
Graphical reports are one way to view the current state of the bug database. You can run reports 

either through an HTML table or graphical line/pie/bar-chart-based one. The idea behind graphical 

report in Bugzilla is to define a set of bugs using the standard search interface and then choosing some 

aspect of that set to plot on the horizontal and vertical axes. You can also get a 3-dimensional report 
by choosing the option of "Multiple Pages". 

 
Reports are helpful in many ways, for instance if you want to know which component has the largest 
number of bad bugs reported against it. In order to represent that in the graph, you can select severity 

on X-axis and component on Y-axis, and then click on generate report. It will generate a report with 

crucial information. 



80  

 
 

The graph below shows the Bar chart representation for the Bugs severity in component "Widget 

Gears". In the graph below, the most severe bug or blockers in components are 88 while bugs with 

normal severity are at top with 667 number. 

 
 

 

Likewise, we will also see the line graph for %complete Vs Deadline 

Step 1) To view your report in a graphical presentation, 

 Click on Report from Main Menu
 Click on the Graphical reports from the given option



81  

 
 
 

Step 2) Let's create a graph of % Complete Vs Deadline 

 
In here on the vertical axis we chose % Complete and on our horizontal axis we chose Deadline. 
This will give the graph of amount of work done in percentage against the set-deadline. 

 
Now, set various option to present reports graphically 

 
1. Vertical Axis 

2. Horizontal Axis 
3. Multiple Images 

4. Format- Line graph, Bar chart or Pie chart 
5. Plot data set 

6. Classify your bug 

7. Classify your product 

8. Classify your component 
9. Classify bug status 

10. Select resolution 
11. Click on generate report 

 

The image of the graph will appear somewhat like this 



82  

 
 

 

Browse Function 

 
Step 1) To locate your bug we use browse function, click on Browse button from the main menu. 

 
 
 

Step 2) As soon as you click on browse button a window will open saying "Select a product 

category to browse" as shown below, we browse the bug according to the category. 

 
 After clicking the browse button
 Select the product "Sam's Widget" as such you have created a bug inside it

 

 

 

Step 3) It opens another window, in this click on component "widget gears". Bugzilla Components 
are sub-sections of a product. For instance, here our product is SAM'S WIDGET whose component 

is WIDGET GEARS. 



83  

 
 

Step 4) when you click on the component, it will open another window. All the Bugs created under 

particular category will be listed over-here. From that Bug-list, choose your Bug#ID to see more 

details about the bug. 

 

It will open another window, where information about your bug can be seen more in detail. In the 

same window, you can also change the assignee, QA contact or CC list. 

 
 

 
How to use Simple search option in BugZilla 

 
Bugzilla provides two ways of searching bugs, they are Simple Search and Advance 

Searchmethods. 

 
Step 1) We will first learn the "Simple Search" method. Click on search button from the main menu 

and then follow these steps 

 
1. Click on "Simple Search" button 
2. Choose the status of the Bug – choose Open if you are looking the bug in Open status and 

closed for bug in closed status 

3. Choose your category and component, and you can also put keywords related to your bug 
4. Click on the search 



84  

 
 

Step 2) Here we will search for both option open and closed status, first we have selected closed 

status for bug and clicked search button. 

 
 

For closed status, it fetched 12 bugs. 

 
 

Step 3) Likewise we have searched for Open status as well, and it has fetched 37 bugs related to our 

queries. 



85  

 

Also, at the bottom of the screen you have various options like how you want to see your bug - an 

XML format, in Long format or just Time summary. Apart from that you can also use other option 
like send mail to bug assignee, change several bugs at once or change column of the screen, etc. 

 
 
 

In next step, we will demonstrate one of this function change column of the screen, through which 

we will learn how to add or remove the column to the existing column. 

 
How to add or remove column to default search screen 

 
Step 1) Click on the Change Column as shown in above screen-shot. It will open a new window 

where you have to follow these steps. 

 
 Select any given option from the column you want to appear in the main screen - here we 

have selected % complete

 Click on the arrow button, it will move % complete column from  Available Column to 

the Selected column

 
These steps will move the selected column from left to right. 

 

 

The % complete is moved from left to right as shown below, and once we click on change columnit 



86  

will appear in the main screen 

 
 

 
Before- Search result screen before using "Change Column" option- 

 
 There is no % complete column appears in search screen result as shown below

 

 
 

After- Search result screen after using "Change Column" option 

 
 You can see % complete column added to the extreme right in the existing column in the 

main screen, which was not their previously.
 

 

How to use Advance Search in BugZilla 

Step 1) After Simple search we will look into Advanced Search option for that you have to follow 
the following steps. 

 
1. Click on advanced search option 
2. Select option for summary, how you want to search 

3. Enter the keyword for your bug- for example, Widget gears twisted 



87  

4. Select the category of your Bug under classification, here we selected Widget 

5. Choose your product under which your Bug was created- Sam's Widget 
6. Component- Widget gears 

7. Status- Confirmed 

8. Resolution 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Step 2) Once you select all the option, click on search button. It will detect the bug you 
created 

 

 

The advance search will find your bug, and it will appear on the screen like this 

 

 
How to use preferences in BugZilla 



88  

Preferences in Bugzilla is used to customize the default setting made by Bugzilla as per 

our requirement. There are mainly five preferences available 

 
 General Preferences

 E-mail Preferences
 Saved Searches

 Account Information
 Permissions

 
General Preferences 

 
For general preferences, you have various option like changing Bugzilla general appearance, 

position of the additional comment box, automatically add me to cc, etc. Here we will see how to 
change the general appearance of the Bugzilla. 

 
There are many changes you can do which are self-explanatory, and you can choose the option as per 
your requirement. 

 
Step 1) 

 
 To set the background Skin of Bugzilla

 Go to Bugzilla general preference (Skin)
 Select the option you want to see as a change and submit the change ( Dusk  Classic )
 A message will appear on the window saying changes have been saved, as soon as you submit 

the changes
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

After                                                                                                                                              
the skin preference is changed to Classic from Dusk, the back-ground color of the screen appears 

white 



89  

 
 

 

Likewise, for other default settings changes can be done. 
 

E-mail preferences 

 

E-mail preferences enable you to decide how to receive the message and from whom to receive the 
messages. 

 
Step 1) To set the e-mail preferences 

 
1. Click on e-mail services 

2. Enable or disable the mail to avoid receiving notification about changes to a bug 
3. Receiving mail when someone asks to set a flag or when someone sets a flag you asked for 
4. When and from whom you want to receive mail and under which condition. After marking 

your option at the end, submit the changes. 
 

 
 

Saved Searches Preference 

 
Saved searches preference gives you the freedom to decide whether to share your bug or not to share. 

 
Step 1) Click on saved searches, it will open window with the option like editbugs, don't share, 

canconfirm, etc. Choose the option as per your need. 



90  

 
 
 

Step 2) We can run our bug from "Saved Searches". 

 
 Go to Saved Searches under preference

 Click on the "Run" button
 

 
As soon as you run your search from Saved Searches it opens your bug as shown below 

 

 

Step 3) In the same window we can also choose specific users with whom we want to share the search 
by marking or unmarking the checkbox against the users 



91  

 

viva questions 

 

1. What is Bugzilla? 

2. What are Bugzilla„s features? 

3. What are Bugzilla Components? 

4. How do I change my user name in Bugzilla? 

5. What is about the Bug List page? 

6. How to Write a Useful Bug Report with Bugzilla 



92  

EXPERIMENT: 9 

NAME OF THE EXPERIMENT: Study of Any Test Management Tool ( Test Director) 
 

Test Director is a global test management solution which provides communication, organization, 
documentation and structure to the testing project. 

 
Test Director 

 

Software Automated Tool TestDirector simplifies test management by helping you organize and 

manage all phases of the software testing process, including planning, creating tests, executing tests, 

and tracking defects. 

 
PLANNING TESTS: 

 

Divide your application into test subjects and build a project. 

1. Define your testing goals. 

Examine your application, system environment, and testing resources to determine what and how you 

want to test. 

2. Define test subjects. 

Define test subjects by dividing your application into modules or functions to be tested. Build a test 

plan tree that represents the hierarchical relationship of the subjects. 

3. Define tests. 

Determine the tests you want to create and add a description of each test to the test plan tree. 

4. Design test steps. 

Break down each test into steps describing the operations to be performed and the points you want to 

check. Define the expected outcome of each step. 

 

 

 

5. Automate tests. 

Decide whether to perform each test manually or to automate it. If you choose to perform a 

test manually, the test is ready for execution as soon as you define the test steps. If you choose 

to automate a test, use WinRunner to create automated test scripts in Mercury 

Interactives Test Script Language (TSL). 



93  

6. Analyze the test plan. 

Generate reports and graphs to help you analyze your test plan. Determine whether the tests in 

the project will enable you to successfully meet your goals. 

 

 

 
 

 

 

 

RUNNING TESTS: 

 
Create test sets and perform test runs. 

1. Create test sets. 

Create test sets by selecting tests from the project. A test set is a group of tests you execute to meet a 

specific testing goal. 

 
To define a test set: 

 

To add a test set to the test sets list: 

 



94  

Define the test set details: 

 

 

 

Adding tests to a test set: 

 

 
Scheduling Test Runs: 

 

 

Schedule test execution and assign tasks to testers. Run the manual and/or automated tests in the test 

sets. 



95  

Running Tests Manually: 

 

Run the tests: 

 

 
View a summary of test results in the execution grid: 

 

4. Analyze the testing progress. 

Generate reports and graphs to help you determine the progress of test execution 



96  

TRACKING DEFECTS: 

 

1. Report defects detected in your application and track how repairs are progressing. 

2. Report defects detected in the software. Each new defect is added to the defect database. 

3.Track defects. 

 

Review all new defects reported to the database and decide which ones should be repaired. Test a new 

version of the application after the defects are corrected. 

Updating Defects: 

 

 
4. Analyze defect tracking. 

Generate reports and graphs to help you analyze the progress of defect repairs, and to help you 

determine when to release the application. 

a) end a defect report to the TestDirector database. 

b) Review the defect and assign it to a member of the development team. 

c) Repair the open defect. 

d) Test a new build of the application after the defect is corrected. If the defect does not reoccur, 

change the status of the defect. 

e) Generate reports and graphs to help you analyze the progress of the defects in your TestDirector 

project. 

f) Reporting a New Defect 

You can report a new defect at any stage of the testing process by adding a defect record to the project 

database. Each defect is tracked through four stages: New, Open, Fixed, and Closed. When you 

initially report a defect to the project database, you assign it the status New. 

Viva questions 

1. What is test director? 

2. What are the modules of test director? 
3. What is the use of test director? 

4. What are the various reports in test director? 



97  

EXPERIMENT: 10 

NAME OF THE EXPERIMENT: Study of any open source testing tool (TestLink) 

Testlink is an open source test management tool. It enables creation and organization of test cases and helps 
manage into test plan. 

 
Login to TestLink 

 
Step 1 : Open the Testlink home-page and enter the login details 

 
1. Enter the userID – admin 
2. Enter the password 
3. Click on the login tab 

 

 

Creating a Test Project 

 
Step 1: In the main window click on Test Project Management, it will open another window 

 



98  

Step 2: Click on tab "create" to create a new project. 
 

 
Step 3: Enter all the required fields in the window like category for test project, name of the project, prefix, 

description, etc. After filling all necessary details, click on tab "Create" at the end of the window. 
 

 

This will create your project "Guru99" successfully. 
 

 
Creating a Test Plan 

 
Test plan holds the complete information like scope of Software testing, milestone, test suites and test cases. Once 

you have created a Test Project, next step is to create Test plan. 



99  

Step 1: From the home-page, click on Test Plan Management from home-page 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

Step 2: It will open another page, at the bottom of the page click on a tab "Create" 
 

 
Step 3: Fill out all the necessary information like name, description, create from existing test plan, etc. in the open 
window, and click on "create tab" 

 

 
Step 4: Guru 99 Test Plan is created successfully 

 

Build Creation 
 

Build is a specific release of software 

Step 1: Click on Builds/Releases under Test Plan from the home page 



100  

 
Step 2: In the next window, fill all necessary details for software release and click on create to save your 

release 

 
1. Enter the title name 
2. Enter the description about the software release 
3. Mark the check-box for status- Active 

4. Mark the check-box for status- Open 
5. Choose the data of release 
6. Click on create button 

 

 
Once you have a release the software it, will appear like this 

 

 
Creating Test suite 

 
Test suite is a collection of test cases which may be testing or validating the same component. Following steps will 

explain how to create test suite for your project. 



101  

Step 1: Click on test specification option from the home page. 

 

 

Step 2: On the right-hand side of the panel, click on the setting icon . It will display a series of test 

operation. 

 
Step 3: Click on the "create" tab for the test suite 

 

 
 

Step 4: Fill-up all the details for test-suite and click on save it tab. 

 
1. Enter the test suite name 
2. Enter the details about your test suite 

3. Click on save button to save the details of test-suite 
 

 
You can see test suite for Guru 99 is created 



102  

 
 

Your test suite appears on the left side of the panel under folder structure tree 

 
Creating a Testcase 

 
Testcase holds a sequence of test steps to test a specific scenario with expected result. Below steps will explain how 
to create a test-case along with test steps. 

 
Step 1: Click on the test suite folder on the left side of the panel under folder tree structure 

 

 
Step 2: Click on the setting icon in the right side panel. List of test case operations will be displayed on the right 

side panel 
 

 
Step 3: New window will open, to create test cases click on create button in test-case operations 

 

 
Step 4: Enter the details in the test case specification page 



103  

 
 

Step 5: After entering the details, click on "create" button to save the details. The test-case for Guru99 is created 

successfully 
 

 
Step 6: Click on test-case from the folder as shown above, it will open a window. Click on "create steps" button in 

test case. It will open a test case step editor 
 

 

Step 7) It will open another window on the same page, in that window you have to enter the following details 

 
1. Enter the step-action for your test case 

2. Enter the details about the step action 
3. Click save it and add another step action OR click save and exit tab if there is no more test step to add 



104  

 
 

Step 8) Once you save and exit the test step, it will appear like this 
 

 
Assigning test case to test plan 

 
For test case to get execute, it should be assign to test plan. Here we will see how we can assign a test-case to test 
plan. 

 
 

Step 1) Click on the setting icon on the test panel. It will show the list of operations. 

 
Step 2) Click on "Add to Test Plans" 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Step 3) 

New window will open, search your project "Guru99" 



105  

1. Mark the check box against your test plan 
2. Click on add button 

 

 

 

 

 

 

 

 

 

 
 

 

This will 

add your test case to your Test Plan. 

 
Creating Users and Assigning Roles in TestLink 

 
Testlink provides User management and authorization features. 

Below is list of default roles in Testlink and their rights - 

Role Test Cases Test Metrics 

Guest View View 

Tester Execute View 

Senior Tester Edit & Execute View 

Leader & Admin Edit & Execute Edit & Execute 

 

 
Step 1: From the Testlinks home-page, click on users/roles icon from the navigation bar 

 

 
Step 2: Click Create 

 

 

Step 3: Fill out all the users details and click the "Save" button 



106  

 
 

Here in the list we can see the users have been created 
 

 

Step 4: Allotting test project role to the user, 

 
1. Click on "Assign Test Project Roles" tab 

2. Choose the project name 
3. Select the users role from the drop down 

 
 

 



107  

Writing Requirements: 

 
Step 1: From the navigation bar select the "Requirements Link", it opens the Requirement page. 

 

 
Step 2: From the requirement page, on the right side of the panel click on "create" button 

 

 
Step 3: A new window will open, enter all the details like 

 
1. Document ID 
2. Title name 

3. Requirement description 

4. And Click "Save" button 

 
For the type, you can choose the option from the drop-down- here we chose "User Requirement Specification" 

 



108  

Step 4: It should create Requirement specification and displayed on the left side panel under project "Guru99". 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Step 5: Select the setting button from requirements specification home-page. It will open another window. 
 

 
Step 5: Click "Create" tab under Requirement Operations. 

 

 
Step 6: Fill out all the specified details and click the "Save" button 

 
1. Enter the document ID 

2. Enter the title name 

3. Enter the description 

4. Enter the status-whether it's in draft, rework, review, not testable, etc. Here we chose valid 
5. Enter the type – user interface, non-functional, informational, feature, etc. Here we chose use case 

6. Enter the number of test cases needed 
7. Enter "Save" button at the end 



109  

 
 

Note: To add more requirements you can mark the check-box and click save button 

On the left side of the panel, we can see that requirement is added. 

 

 
Assigning requirement to test-cases 

 
In Testlink, Requirement can be connected to test cases. It is very crucial feature in order to track test coverage 

based on requirements. In test reports, you can verify which requirements are not covered and act on them to 

apend in test suites for maximum test coverage 

 
Step 1: From test specification section open any single test case and click on requirement icon 

 



110  

Step 2: To assign requirements specification to test case you have to follow the following steps 

 
1. Scroll the drop down box to select the requirements specification 
2. Mark the requirement check box 
3. Click on "assign" tab 

 

 

After clicking on "assign" tab, a window will appear stating "Assigned Requirement." 
 

 

Executing a test case 

 
In TestLink, we can run a test case and change execution status of a test case. Status of a test-case can be set to 

"blocked" "Passed", or "failed". Initially, it will be in "not run" status but once you have updated it, it cannot be 

altered to "not run" status again. 

 
Step 1: From the navigation bar click on the "Test Execution" link. It will direct you to the Test Execution Panel. 



111  

 
 

Step 2: Pick the Test case you want to run from the left side panel 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Once you have selected the test cases, it will open a window. 
 

 

 
 

Step 4: Follow the following steps 



112  

1. Enter the notes related to test case executed 
2. Select its status 

 

 

 

 

Step 5: On the same page, you have to fill similar detail about the execution of test-case. Fill the details, select the 
status and then click on "save execution". 

 

 

Generating Test Reports 

 
Test link supports various test report formats like 

 
 HTML 

 MS Word 

 MS excel 
 OpenOffice Writer 
 OpenOffice calc 

 

 

 

 

Step 1: From the navigation bar, click on Test Reports option 



113  

 
 

Step 2: From the left side panel, select "Test Report" link 
 

 
Step 3: To generate a report follow the following steps 

 
1. Mark and unmark the option you want to highlight in your test report 

2. click on your project folder 
 

 

The test report will look like this 
 

 

 

Export Test case/ Test Suite 

Testlink provides the features to export test projects/test suites in your Testlink and then you can import them into 
another Testlink project on different server or system. In order to do that you have to follow the following step 

Step 1: Choose the test case you want to export in the Test specification page 



114  

 
 
 

Step 2: Now on the right-hand side of the panel click on the setting icon, it will display all the operations that 

can be performed on the test case. 

 
Step 3: Click the "export" button 

 

 
 

Step 4: It will open another window, mark the option as per requirement and click on the export tab 
 

 

Following XML is generated 

 
Importing Test case/ Test suite 

 
Step 1: Select the Test suite folder inside which you want to import the test case 

 



115  

 

Step 2: Click on the setting icon on the right hand-side of the panel, it will display all the operations that can 

be executed on the test suite/test case 

 
Step 3: Click on the import button in the test case operations list as 

 

 

Step 4: Browse and attach the xml test case file that you have exported from test link and click on upload button. 

 
1. Use the browse option to attach the XML test case file that you have exported from testlink 
2. Click on upload file 

 

 

When you upload a file, it will open window stating import test cases 
 

 

Step 5: Test case will be uploaded and displayed on the right-hand side of the panel 
 



116  

11 b) Test Facebook Manually (beyond the syllabus) 



117  

11 b) Test Facebook Manually (beyond the syllabus) 



118  

Week 12: Take a mini project and execute it during SDLC create the various UML 

diagrams required designing and all testing documents like test plan,TCD etc., 


	(Autonomous Institution – UGC, Govt. of India)
	 To acknowledge quality education and instill high patterns of discipline making the students technologically superior and ethically strong which involves the improvement in the quality of life in human race.
	 To achieve and impart holistic technical education using the best of infrastructure, outstanding technical and teaching expertise to establish the students into competent and confidentengineers.
	PEO1 – ANALYTICAL SKILLS
	Engineering Graduates will be able to:

	CASE tools known as Computer-aided software engineering tools is a kind of component- based development which allows its users to rapidly develop information systems. The main goal of case technology is the automation of the entire information systems...
	The unified modeling language (UML) is a standard language for writing software blue prints of the system.
	The UML is a language for
	4. SequenceDiagram
	5 Collaboration Diagram
	6. Statechart Diagram
	9. Deployment Diagram


	Automatic Teller Machine (ATM)
	Description of ATM System
	Withdrawal UseCase
	WITHDRAWUseCase:
	ENQUIRYUseCase:
	DEPOSITUseCase:
	STATECHARTDiagram
	Inferences:
	withdraw
	EXPERIMENT: 1
	i.)do..while:
	v) for Syntax:
	Viva questions:
	EXPERIMENT: 2
	FAILURE CASES:
	viva questions:
	EXPERIMENT: 3
	Purpose:
	Scope:
	Intended Audience:
	Product Perspective:
	Product functions:
	Operating Environments:
	Design/implementation constraints:
	Assumptions and Dependencies:
	EXPERIMENT: 4
	banking application may have:
	2) Requirement Review:
	3) Business Scenario Preparations:
	Test Case Preparation:
	Test Case Review:
	Test Case Execution:
	6) Security Testing:
	Four phases are:
	1. Input parameters checking - Name
	Test cases
	viva questions
	EXPERIMENT: 5
	INTRODUCTION
	Result GUI test
	Database test
	Basic function test Add a student
	Add a book
	Search for book
	Check-in book
	Check-out book
	View student detail Pass criteria:
	Network test
	Viva questions
	EXPERIMENT: 6
	Testing an Application using WinRunner
	Recording Test Cases
	Test Cases and the Expected Output for Testing the Calculater
	Viva questions (1)
	EXPERIMENT: 7
	What is Selenium?
	Selenium IDE
	Selenium IDE Features
	Creating Selenium IDE Tests
	Savingthe Recorded Test
	Savingthe Test Suite
	Executingthe Recorded Test
	Selenium IDE Script Debugging
	Inserting Verification Points
	Selenium Pattern Matching
	Selenium User Extensions
	Viva questions: (1)
	EXPERIMENT: 8
	Introduction
	How to log-in to Bugzilla
	Creating a Bug-report in Bugzilla
	Create Graphical Reports
	Browse Function
	How to use Simple search option in BugZilla
	How to add or remove column to default search screen
	How to use Advance Search in BugZilla
	How to use preferences in BugZilla
	General Preferences
	Step 1)
	E-mail preferences
	Saved Searches Preference
	viva questions (1)
	EXPERIMENT: 9
	Test Director
	PLANNING TESTS:
	1. Define your testing goals.
	2. Define test subjects.
	3. Define tests.
	4. Design test steps.
	5. Automate tests.
	6. Analyze the test plan.
	RUNNING TESTS:
	1. Create test sets.
	To define a test set:
	Running Tests Manually:
	TRACKING DEFECTS:
	Viva questions (2)
	EXPERIMENT: 10
	Login to TestLink
	Creating a Test Project
	Creating a Test Plan
	Build Creation
	Creating Test suite
	Creating a Testcase
	Assigning test case to test plan
	Step 3)
	Creating Users and Assigning Roles in TestLink
	Writing Requirements:
	Assigning requirement to test-cases
	Executing a test case
	Generating Test Reports
	Export Test case/ Test Suite
	Importing Test case/ Test suite




